APPENDIX 'A' GEOTECHNICAL REPORT

WSP Canada Group Ltd.

2022 Local Streets Package 22-R-03

Prepared for:

Lissa Van Dorp WSP Canada Group Ltd. 111-93 Lombard Avenue Winnipeg, MB R3B 3B1

Project Number: 1000-043-18

Date: February 2, 2022

Quality Engineering | Valued Relationships

February 2, 2022

Our File No. 1000-043-18

Lissa Van Dorp WSP Canada Group Ltd. 111-93 Lombard Avenue Winnipeg, MB R3B 3B1

RE:

2022 Local Streets Package 22-R-03

TREK Geotechnical Inc. is pleased to submit our Final Report for the geotechnical investigation for 2022 Local Streets Package (22-R-03) project.

Please contact the undersigned should you have any questions.

Sincerely,

TREK Geotechnical Inc.

Per:

Nelson John Ferreira, Ph.D., P.Eng. Senior Geotechnical Engineer

Encl.

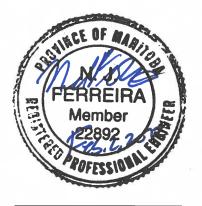
Revision History

Revision No.	Author	Issue Date	Description
0	AD	February 2, 2022	Final Report

Authorization Signatures

Prepared By:

Prepared By:


Asad Dustmanatov C.E.T.

Geotechnical Engineering Technologist

Reviewed By:

Angela Fidler-Kliewer, C. Tech Manager of Laboratory and Field

Services

Reviewed By:

Nelson John Ferreira, Ph.D., P.Eng. Senior Geotechnical Engineer

Table of	of Contents
Letter of T	ransmittal
Revision I	listory and Authorization Signatures
1.0 Int	roduction1
2.0 Ro	ad Investigation1
3.0 Clo	osure
Figures	
Sub-Surfa	ee Logs
Appendice	S
List of	Tables
Table 1: R	oad Investigation Program1
	BR Testing Summary2
Table 3: C	oncrete Core Compressive Strength Results
List of	Figures
Figure 01	Test Hole Location Plan – Roslyn Rd. and Gerard St.
Figure 02	Pavement Core Location Plan – Wardlaw Ave.
Figure 03	Pavement Core Location Plan – Oakenwald Ave.
Figure 04	Pavement Core Location Plan – Waterford Ave.
	.
List of	Appendices
Appendix	A Test Hole Logs, Summary Table & Lab Testing Results and Pavement Core Photos – Waterford Avenue
Appendix	B Summary Table, Pavement Core Photos, and Summary of Pavement Compressive Strength – Gerard Street
Appendix	C Summary Table, Pavement Core Photos – Oakenwald Avenue
Appendix	D Summary Table, Pavement Core Photos, and Summary of Pavement Compressive

Strength – Roslyn Road

 $\begin{array}{ll} \mbox{Appendix E} & \mbox{Summary Table, Pavement Core Photos, and Summary of Pavement Compressive} \\ & \mbox{Strength} - \mbox{Wardlaw Avenue} \end{array}$

1.0 Introduction

This report summarizes the results of the road investigation completed for the Local Streets Package 22-R-03 project. The project included drilling test holes along Waterford Avenue, and collecting pavement cores along Gerard Street, Oakenwald Avenue, Roslyn Road, Wardlaw Avenue and Waterford Avenue. The test hole information collected describes the pavement structure of the existing road as well as the soil stratigraphy beneath the pavement structure. The investigation was carried out following the City of Winnipeg RFP No. 476-2021 (Appendix B – Site Investigation requirement for public works street projects).

2.0 Road Investigation

The investigation included coring of pavement at 29 locations on 5 different local streets with drilling of test holes at 5 locations along one street. WSP selected the investigation locations as shown on Figures 01 to 04 (attached) and the table below summarizes the investigation program per street.

of Street Investigation Locations Waterford Avenue 5 Pavement Cores and Test Holes (Between Pembina Hwy and Lyon St.) **Gerard Street** 3 Pavement Core (Between River Ave to End) Oakenwald Avenue 8 **Pavement Cores** (Between Wicklow S.t and Point Rd.) Roslyn Road 4 **Pavement Cores** (Between Osbourne St. and Roslyn Cr.) Wardlaw Avenue 9 Pavement Cores (Between Donald St. and Osborne St.)

Table 1: Road Investigation Program

The road investigation was conducted between January 16th and 20th, 2022. The pavement structure (asphalt/concrete) was cored by Naimu Mujyambere and Asad Dustmamatov of TREK Geotechnical Inc. (TREK) using a portable coring press equipped with a hollow 100 mm and 150 mm diameter diamond core drill bits. The test holes were drilled by Asad Dustmamatov to a depth of 2.0 m below road surface by Maple Leaf Drilling Ltd. using a truck mounted drill rig equipped with 125 mm diameter solid stem augers. The sub-surface conditions were observed during drilling and visually classified by Asad Dustmamatov of TREK. Other pertinent information such as groundwater and drilling conditions were also recorded during the drilling investigation. Disturbed (auger cuttings) samples and bulk samples retrieved during the sub-surface investigation were transported to TREK's material testing laboratory for further testing. Core samples were also retrieved and logged at TREK's material testing laboratory

Core and test hole logs noted on the summary tables and test hole locations are based on UTM coordinates obtained using a hand-held GPS, and their location relative to the nearest address or intersection, measured distance from the edge of pavement, or other permanent features.

The laboratory testing program consisted of moisture content determination on all samples, as well as Atterberg limits, and grain size analysis (hydrometer methods) on select samples between 0.6 and 1.1 m below pavement as well as Standard Proctor and CBR testing. Information gathered for each street package is included in separate appendices (Appendices A to E). The information provided in the Appendices includes test hole logs, laboratory testing summary tables and results, and photos of the concrete cores.

One CBR was completed on bulk samples of the soil units present below the pavement. Only silt and clay were encountered within the prescribed sample depth for CBR testing and the results are shown in the table below.

Sample Description	Street	Depth (m)	SPMDD (kg/m³)	Opt. Moisture (%)	Percent Proctor (%)	Moisture Content (%)	CBR Value at 2.54 mm	CBR Value at 5.08 mm
Clay	Waterford Ave	0.3-1.5	1568	23.1	94.2	23.8	3.5%	3.0%

Table 2: CBR Testing Summary

The test hole logs include a description of the soil units encountered during drilling and other pertinent information such as groundwater conditions and a summary of the laboratory testing results. The soils were classified in general accordance with the Unified Soil Classification System (USCS) and the AASHTO soil classification system (American Association of state highway and transportation officials). The AASHTO system classifies soils based on laboratory testing results from Atterberg Limits and grain size testing methods (hydrometer and mechanical sieve method). Where laboratory testing was not conducted, the AASHTO classification of the soils were interpreted based on a visual assessment as indicated with a (I) on the test hole logs and attached tables. For cohesive soils, the AASHTO system uses a combination of testing results to determine the Group Index of the soils and thus, were only determined where sufficient laboratory test data was available.

Twelve concrete cores were selected for concrete compressive strength breaks and the length to diameter ratio ranged between 1.52 to 1.98 for the cores collected. The core compressive strength tests were tested in accordance with CSA A23.2-14C – wet dried condition. The measured compressive strengths were also corrected based on an adapted ACI 214.4R-03 Standard to estimate the in-place concrete strengths. The table below summarizes the compressive strength results while the compressive strength testing details and the correction factor methodology are included in Appendix B, D and E.

^{*} Testing completed on combining grab samples from the top 1.5 m of each test hole.

Table 3: Concrete Core Compressive Strength Results

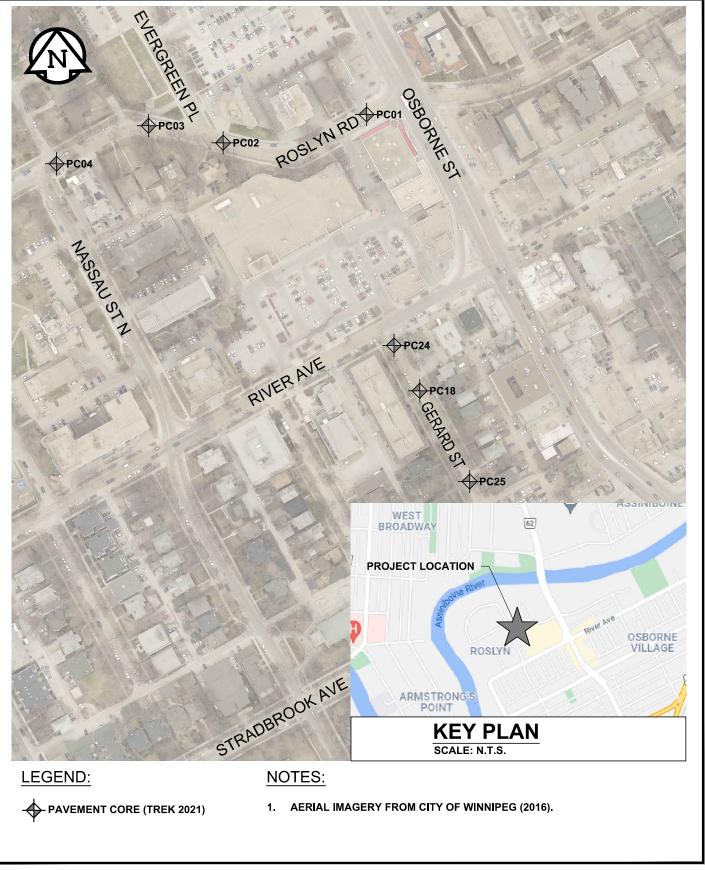
Core ID	Uncorrected Compressive Strength (MPa)	Rebar Corr. Factor	Corrected Compressive Strength (MPa)
PC-01	65.92	-	76.42
PC-02	72.46	-	83.10
PC-03	61.97	-	71.88
PC-05	62.18	-	72.11
PC-07	60.12	-	69.47
PC-09	60.31	-	69.63
PC-18	66.81	-	75.91
PC-24	74.51	1.08	92.30
PC-25	65.07	-	75.48
PC-26	61.02	-	70.80
PC-27	61.00	-	70.65
PC-28	59.04	-	68.40

3.0 Closure

The information provided in this report is in accordance with current engineering principles and practices (Standard of Practice). The findings of this report were based on information provided (field investigation, laboratory testing, geometries). Soil conditions are natural deposits that can be highly variable across a site. If sub-surface conditions are different than the conditions previously encountered on-site or those presented here, we should be notified to adjust our findings if necessary.

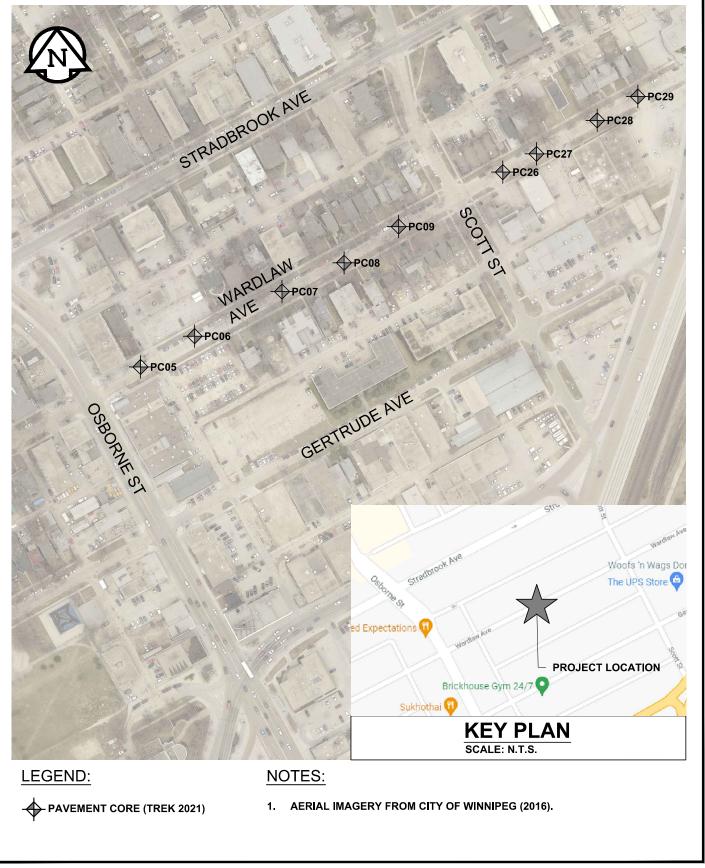
All information provided in this report is subject to our standard terms and conditions for engineering services, a copy of which is provided to each of our clients with the original scope of work, or a mutually executed standard engineering services agreement. If these conditions are not attached, and you are not already in possession of such terms and conditions, contact our office and you will be promptly provided with a copy.

This report has been prepared by TREK Geotechnical Inc. (the Consultant) for the exclusive use of WSP Canada Group Ltd. (the Client) and their agents for the work product presented in the report. Any


findings or recommendations provided in this report are not to be used or relied upon by any third parties, except as agreed to in writing by the Client and Consultant prior to use.

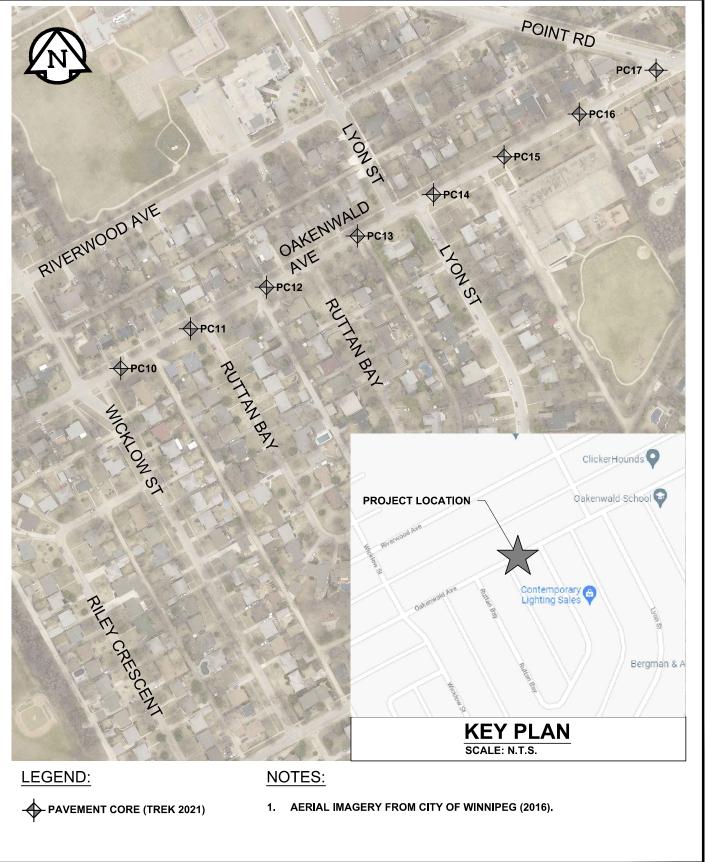
Figures

Z./Projects/1000 Soils LabtLab Projects/1000 Lab Projects/1000 Lab Projects/1000 0-043 WSP/1000-043-18 2022 Local Streets Package (22-R-03)\3 Survey and Dwg\3,4 CAD\3,4.3 Working Folder, 2022-01-28 3:06:42 PM

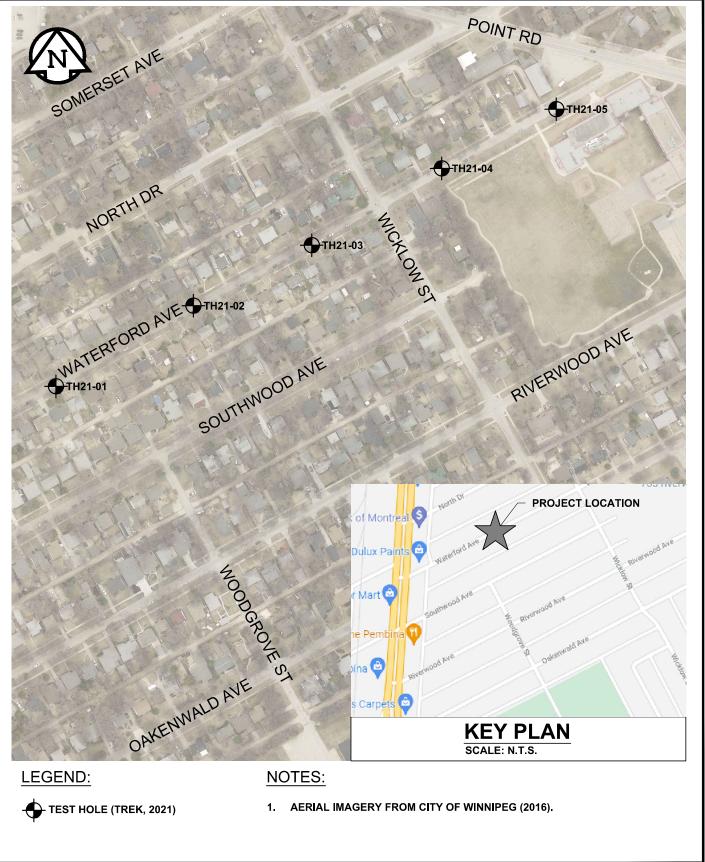


0 50 100 150 m SCALE = 1 : 2 500 (216 mm x 279 mm)

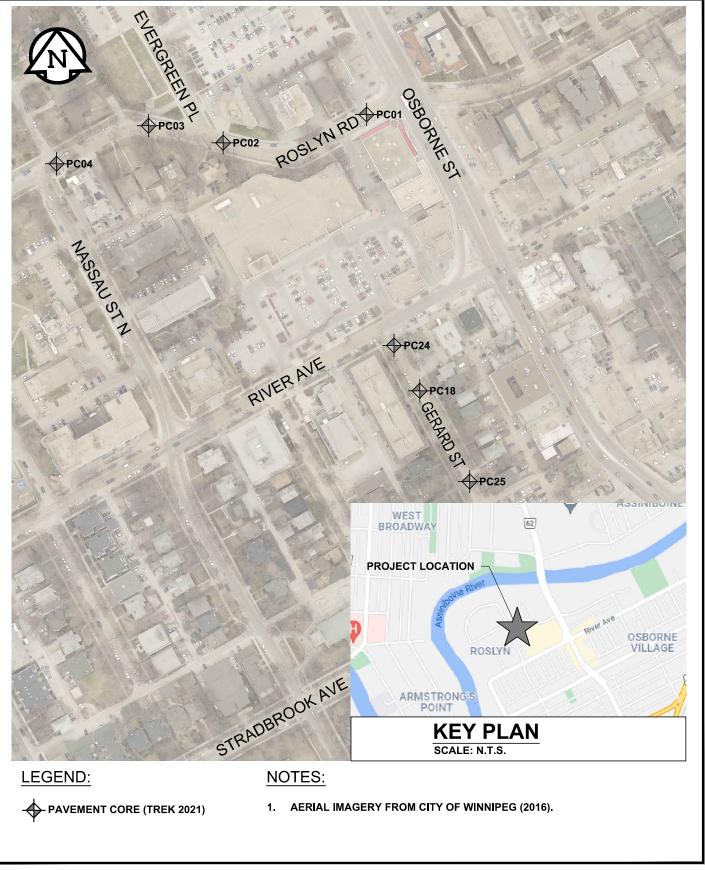
Figure 01



Z./Projects/1000 Soils LabtLab Projects/1000 Lab Projects/1000 Lab Projects/1000 D43 WSP/1000-043 WSP/1000-043-18 2022 Local Streets Package (22-R-03)\3 Survey and Dwg\3.4 CAD\3.4.3 Working Folder, 2022-01-28 3:06:03 PM

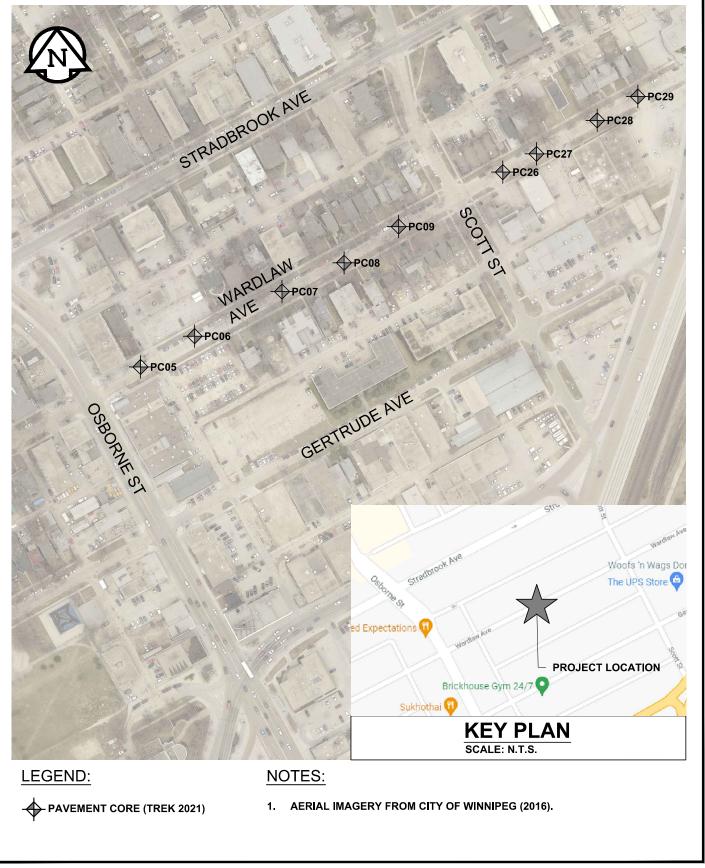


Z./Projects/1000 Soils LabtLab Projects/1000 Lab Projects/1000 Lab Projects/1000 0-043 WSP/1000-043-18 2022 Local Streets Package (22-R-03)\3 Survey and Dwg\3.4 CAD\3.4.3 Working Folder, 2022-01-28 3:05:30 PM



Z./Projects/1000 Soils LabtLab Projects/1000 Lab Projects/1000 Lab Projects/1000 0-043 WSP/1000-043-18 2022 Local Streets Package (22-R-03)\3 Survey and Dwg\3,4 CAD\3,4.3 Working Folder, 2022-01-28 1:09:31 PM

Z./Projects/1000 Soils LabtLab Projects/1000 Lab Projects/1000 Lab Projects/1000 0-043 WSP/1000-043-18 2022 Local Streets Package (22-R-03)\3 Survey and Dwg\3,4 CAD\3,4.3 Working Folder, 2022-01-28 3:06:42 PM



0 50 100 150 m SCALE = 1 : 2 500 (216 mm x 279 mm)

Figure 01

Z./Projects/1000 Soils LabtLab Projects/1000 Lab Projects/1000 Lab Projects/1000 D43 WSP/1000-043 WSP/1000-043-18 2022 Local Streets Package (22-R-03)\3 Survey and Dwg\3.4 CAD\3.4.3 Working Folder, 2022-01-28 3:06:03 PM

Appendix A

Test Hole Logs, Summary Table & Lab Testing Results and Pavement Core Photos – Waterford Avenue

EXPLANATION OF FIELD AND LABORATORY TESTING

GENERAL NOTES

- 1. Classifications are based on the United Soil Classification System and include consistency, moisture, and color. Field descriptions have been modified to reflect results of laboratory tests where deemed appropriate.
- 2. Descriptions on these test hole logs apply only at the specific test hole locations and at the time the test holes were drilled. Variability of soil and groundwater conditions may exist between test hole locations.
- 3. When the following classification terms are used in this report or test hole logs, the primary and secondary soil fractions may be visually estimated.

Ma	jor Div	isions	USCS Classi- fication	Symbols	Typical Names		Laboratory Classifica	ation Criteria		တ္			
	action	gravel no fines)	GW	36	Well-graded gravels, gravel-sand mixtures, little or no fines		$C_U = \frac{D_{60}}{D_{10}}$ greater than 4;	$C_{c} = \frac{(D_{30})^{2}}{D_{10} \times D_{60}}$ between 1 and 3		ASTM Sieve sizes	#10 to #4	#40 to #10	#200 to #40 < #200
sieve size)	Gravels alf of coarse fr	Clean gravel (Little or no fines)	GP	.A.	Poorly-graded gravels, gravel-sand mixtures, little or no fines	urve, 200 sieve) 1bols*	Not meeting all gradation r	requirements for GW	0	STMS	#10	#40 t	#500
No. 200 s	Gravels (More than half of coarse fraction is larger than 4.75 mm)	Gravel with fines (Appreciable amount of fines)	GM		Silty gravels, gravel-sand-silt mixtures	rain size c r than No. g dual sym	Atterberg limits below "A" line or P.I. less than 4	Above "A" line with P.I. between 4 and 7 are border-	Particle Size	4			
ained soils larger thar	(More	Gravel w (Appre amount	GC		Clayey gravels, gravel-sand-silt mixtures	wel from g ion smalle illows: W, SP SM, SC ts requirin	Atterberg limits above "A" line or P.I. greater than 7	line cases requiring use of dual symbols	Parl		2	0	25
Coarse-Grained soils (More than half the material is larger than No. 200 sieve size)	action	sands no fines)	SW	****	Well-graded sands, gravelly sands, little or no fines	Determine percentages of sand and gravel from grain size curve, depending on percentage of fines (fraction snaller than No. 200 sieve) coarse-grained soils are classified as follows: Less than 5 percent GW, GP, SW, SP More than 12 percent GM, GC, SM, SC 6 to 12 percent Borderline case4s requiring dual symbols*	$C_U = \frac{D_{60}}{D_{10}}$ greater than 6;	$C_{c} = \frac{(D_{30})^{2}}{D_{10} \times D_{60}}$ between 1 and 3		E E	2.00 to 4.75	0.425 to 2.00	0.075 to 0.425 < 0.075
half the r	Sands (More than half of coarse fraction is smaller than 4.75 mm)	Clean sands (Little or no fines)	SP		Poorly-graded sands, gravelly sands, little or no fines	ages of sar entage of f s are class cent G	Not meeting all gradation i	requirements for SW			.,	0	Ö
(More than	Sal than half c	Sands with fines (Appreciable amount of fines)	SM		Silty sands, sand-silt mixtures	ne percentarion percentarion percentarion percentarion percentarion percentarion 12 percentarion	Atterberg limits below "A" line or P.I. less than 4	Above "A" line with P.I. between 4 and 7 are border-	rial		40	۶	Clay
	(More	Sands w (Appre amount	sc		Clayey sands, sand-clay mixtures	Determir dependir coarse-g Less More 6 to 1	Atterberg limits above "A" line or P.I. greater than 7	line cases requiring use of dual symbols	Material	000	Sand	Medium	Fine Silt or Clay
e size)	ys	+6	ML		Inorganic silts and very fine sands, rock floor, silty or clayey fine sands or clayey silts with slight plasticity	Plasticity	Plasticity C	Chart		e Sizes	ïï		3 in.
Fine-Grained soils (More than half the material is smaller than No. 200 sieve size)	Silts and Cla	(Liquid limit less than 50)	CL		Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays	70 – 60 –	ano.425 min	"I" "F'LIME	i i	ASTM Sieve Sizes	3 in. to 12 in.		3/4 in. to 3 in. #4 to 3/4 in.
soils er than No	is.	<u> </u>	OL		Organic silts and organic silty clays of low plasticity	NDEX (%)		CA CA	Particle Size	AS			
e-Grained al is small	iys	it 50)	MH	Ш	Inorganic silts, micaceous or distomaceous fine sandy or silty soils, organic silts	PLASTICITY INDEX - 09				mm > 300	75 to 300		19 to 75 4.75 to 19
Fine the materi	ts and Cla	(Liquid limit greater than 50)	СН		Inorganic clays of high plasticity, fat clays	20 -	0	MH or OH		<u></u>	75 to		19 4.75
than half	is is		ОН		Organic clays of medium to high plasticity, organic silts	7 4 0 10	ML or OL 16 20 30 40 50 6 LIQUID LIMI	80 70 80 90 100 110 T (%)	rial	9	ers		Φ
(More	Highly	Organic Soils	Pt	6 40 40 40 40 4	Peat and other highly organic soils	Von Post Class		ong colour or odour, d often fibrous texture	Material	70	Cobbles	Gravel	Coarse Fine

^{*} Borderline classifications used for soils possessing characteristics of two groups are designated by combinations of groups symbols. For example; GW-GC, well-graded gravel-sand mixture with clay binder.

Other Symbol Types

Asphalt	Bedrock (undifferentiated)	Cobbles
Concrete	Limestone Bedrock	Boulders and Cobbles
Fill	Cemented Shale	Silt Till
	Non-Cemented Shale	Clay Till

EXPLANATION OF FIELD AND LABORATORY TESTING

LEGEND OF ABBREVIATIONS AND SYMBOLS

PL - Plastic Limit (%)
PI - Plasticity Index (%)

▼ Water Level at End of Drilling

MC - Moisture Content (%)

▼ Water Level After Drilling as Indicated on Test Hole Logs

RQD- Rock Quality Designation

Qu - Unconfined Compression

SI - Slope Inclinometer

Su - Undrained Shear Strength VW - Vibrating Wire Piezometer

FRACTION OF SECONDARY SOIL CONSTITUENTS ARE BASED ON THE FOLLOWING TERMINOLOGY

TERM	EXAMPLES	PERCENTAGE
and	and CLAY 35 to 50 per	
"y" or "ey"	clayey, silty	20 to 35 percent
some	some silt	10 to 20 percent
trace	trace gravel	1 to 10 percent

TERMS DESCRIBING CONSISTENCY OR COMPACTION CONDITION

The Standard Penetration Test blow count (N) of a non-cohesive soil can be related to compactness condition as follows:

Descriptive Terms	<u>SPT (N) (Blows/300 mm)</u>
Very loose	< 4
Loose	4 to 10
Compact	10 to 30
Dense	30 to 50
Very dense	> 50

The Standard Penetration Test blow count (N) of a cohesive soil can be related to its consistency as follows:

Descriptive Terms	<u>SPT (N) (Blows/300 mm)</u>
Very soft	< 2
Śoft	2 to 4
Firm	4 to 8
Stiff	8 to 15
Very stiff	15 to 30
Hard	> 30

The undrained shear strength (Su) of a cohesive soil can be related to its consistency as follows:

Descriptive Terms	Undrained Shear <u>Strength (kPa)</u>
Very soft	< 12
Soft	12 to 25
Firm	25 to 50
Stiff	50 to 100
Very stiff	100 to 200
Hard	> 200

1 of 1

GENTECHNICOL

Client: City of Winnipeg				Project Number:							
Project	Project Name: Local Street Package 22-R-03 - Waterford Ave				UTM N-5523	011, E-632876					
Contrac	ctor: Maple l	eaf Drilling Ltd.		Ground Elevation:	on: Top of Pavement						
Method:	1: 125mm S	olid Stem Auger, B40 Mobile Truc	k Mount	Date Drilled:	January 20,	2022					
Sa	ample Type:	Grab (G)	Shelby Tube (T) Split Spoon (S	SS)/SPT	Split Barrel (SB) / LF	PT Core (C)				
Pa	article Size Lege	nd: Fines	Clay Silt	Sand	Grave		Boulders				
Depth (m)	Soil Symbol	MATE	RIAL DESCRIPTION		Sample Type Sample Number	PL MC LL	Undrained Shear Strength (kPa) Test Type △Torvane △ Procket Pen. P 図 Qu 図 ○ Field Vane ○ 0 50 100 150 20025				
	70 A	- 60 mm thick			PC22-19						
	- redd - dry to - AAS	L) - some silt to silty, some ish brown o moist, compact to dense, HTO: A-1-b (I) e to some clay, trace sand, brown	poorly graded, rounded to	•	G01	•					
-0.5-	- froze - low t - AAS	en, moist and soft when that o intermediate plasticity HTO: A-4 (I)			G02	•					
-1.0-	- grey - froze - inter	d SILT - trace sand, trace o en, moist and soft to firm wh mediate plasticity HTO: A-6 (17)			G03						
	- high		d stiff to very stiff when tha	wed	G04	•	20				
-1.5-					G05		9 4				
2.0					G06		^				
2.0					G07		△•				
-1.5	1) No seep 2) Test hol 3) Test hol 4) Test hol	EST HOLE AT 2.1 m IN CL age or sloughing observed e open to 2.1 m immediatel be backfilled with auger cuttie located 2 m East of West South curb.	y after drilling. ngs, granular fill and cold լ	oatch asphalt. ave, Eastbound lane,	1.5						
Logged	I By: _Asad Dus	tmamatov	Reviewed By: Angela	Fidler-Kliewer	Project	Engineer: Nelson Fe	reira				

1 of 1

GENTECHNICOL

Client:	City of Win	nipeg		Project Number:	1000-043-1	8					
Project Na	me: Local Stree	et Package 22-R-03 - Wa	terford Ave	Location: <u>UTM N-5523075, E-632985</u>							
Contractor	r: <u>Maple Leaf</u>	Drilling Ltd.		Ground Elevation:	Top of Pave	ement					
Method:	125mm Solid	Stem Auger, B40 Mobile Truck	Mount	Date Drilled:	January 20	, 2022					
Samı	ple Type:	Grab (G)	Shelby Tube (T) Split Spoon (S	SS)/SPT	Split Barrel (SB) /	LPT Core (C)				
Partio	cle Size Legend:	Fines	Clay Silt	Sand	Grav	vel Cobbles	Boulders				
Depth (m) Soil Symbol			RIAL DESCRIPTION		Sam	Bulk Unit Wt (kN/m³) 16 17 18 19 20 2 Particle Size (%) 0 20 40 60 80 10 PL MC LL 0 20 40 60 80 10	Test Type △ Torvane △ → Pocket Pen. → ☑ Qu ☑ ○ Field Vane ○				
- XXI°.	ASPHALT - 70				PC22-20)					
	- reddish - dry to me - AASHTO CLAY - silty, tra - black	brown oist, compact to dense, p D: A-1-b (I) ace sand, trace organics		•	G08	•					
-0.5-	- frozen, r - high plas	noist and firm to stiff whe sticity	en thawed		G09						
	- AĂSHTO	D: A-7-6 (I)			G09						
10					G10		40				
		nics below 1.1 m			G11	•	Δ•				
	- intermed	wn o 1.5 m depth, moist and diate plasticity	soft to firm when thawed		G12						
-1.5- -	- AASHTO	D: A-6 (I)			GIZ						
	- high plas	iff to very stiff sticity			G13		△•				
-2.0-	- AĂSHTO	D: A-7-6 (I)			G14		ΔΦ				
-1.5	1) No seepage 2) Test hole op 3) Test hole ba	cated 2 m East of East c		patch asphalt. ave, Westbound lane,							
Logged By	y: _Asad Dustma	amatov	Reviewed By: Angela	Fidler-Kliewer	Projec	t Engineer: Nelson F	erreira				

ent:	City of Winn	ipeg			Project Number:	1000-	-043-	18					
oject Nam	e: Local Street	Package 22-R-03 - W	/aterford Ave		Location:	UTM	N-552	23123	3, E-6330)79			
ntractor:	Maple Leaf	Drilling Ltd.			Ground Elevation:	Top c	of Pav	emen	nt				
thod:	125mm Solid S	Stem Auger, B40 Mobile Tru	ck Mount		Date Drilled:	Janua	ary 20), 202	2				
Sample	е Туре:	Grab (G)	S	nelby Tube (T)	Split Spoon (S	SS) / SF	PT	S	Split Barr	el (SB) /	LPT	C	ore (C)
Particle	e Size Legend:	Fines	Clay	Silt	Sand		Gra	vel	67	Cobbles		Bould	ders
So		mm thick			ce clay	Sample Type	Sample Number	0 2	7 18 Particle S 0 40 PL MC	n ³) 19 20 ize (%) 60 80 1	00	Strengtl Test △ Torv Pocke Q ○ Field	n (kPa) <u>Type</u> ane ∆ t Pen. ∳ u ⊠
5-	- reddish b - dry to mo - AASHTO CLAY - silty, tra - grey - frozen to - high plas	rown ist, compact to dense : A-1-b (I) ce sand 1.5 m depth, moist an ticity	poorly grade	d, rounded to s	sub-angular			•					
							G17					ΔΦ	△ •
							G20 G21	-	•			△•	
	 No seepage Test hole ope Test hole bace Test hole loce 	or sloughing observed en to 2.1 m immediate ckfilled with auger cutt ated 2 m East of Wes	l. ly after drilling ings, granula	r fill and cold pa	atch asphalt. ve, Eastbound lane, 2	2 m							
	ntractor: thod: Sample Particle (E) 0	Dject Name: Local Street Intractor: Maple Leaf 125mm Solid Street Intractor: Maple Leaf 125mm Solid Street Intractor: Maple Leaf 125mm Solid Street Intractor: Particle Size Legend: ASPHALT - 60 SAND (FILL) - 9 - reddish be dry to mo and the company of the comp	Diject Name: Local Street Package 22-R-03 - Wintractor: Maple Leaf Drilling Ltd. 125mm Solid Stem Auger, B40 Mobile True Sample Type: Grab (G) Particle Size Legend: Fines ASPHALT - 60 mm thick SAND (FILL) - some silt to silty, some reddish brown - reddish brown - reddish brown - reddish brown - AASHTO: A-1-b (I) CLAY - silty, trace sand - grey - frozen to 1.5 m depth, moist and - high plasticity - AASHTO: A-7-6 (64) END OF TEST HOLE AT 2.1 m IN CL 1) No seepage or sloughing observed 2) Test hole open to 2.1 m immediate 3) Test hole backfilled with auger cutt	Digect Name: Local Street Package 22-R-03 - Waterford Aventractor: Maple Leaf Drilling Ltd. 125mm Solid Stem Auger, B40 Mobile Truck Mount Sample Type: Grab (G) Signary Si	Local Street Package 22-R-03 - Waterford Ave	Local Street Package 22-R-03 - Waterford Ave Location:	Location: UTM Cround Elevation: UTM Ground Elevation: UTM Ground Elevation: Top of Date Drilled: January J	Cocal Street Package 22-R-03 - Waterford Ave Location: UTM N-55	Sample Type:	Solution: UTM N-5523123, E-633 (Grade Intractor: Maple Leaf Drilling Ltd. UTM N-5523123, E-633 (Grade Intractor: Maple Leaf Drilling Ltd. UTM N-5523123, E-633 (Grade Intractor: Maple Leaf Drilling Ltd. UTM N-5523123, E-633 (Grade Intractor: Maple Leaf Drilling Ltd. UTM N-5523123, E-633 (Grade Intractor: Maple Leaf Drilling Ltd. UTM N-5523123, E-633 (Grade Intractor: Maple Leaf Drilling Ltd. UTM N-5523123, E-633 (Grade Intractor: Maple Leaf Drilling Ltd. UTM N-5523123, E-633 (Grade Intractor: Maple Leaf Drilling Ltd. UTM N-5523123, E-633 (Grade Intractor: Maple Leaf Drilling Ltd. UTM N-5523123, E-633 (Grade Intractor: Maple Type: Intrac	Local Street Package 22-R-03 - Waterford Ave Location: UTM N-5523123, E-633079 UTM N-5523123, UTM N-552312	Coat Street Package 22-R-03 - Waterford Ave Coation: UTM N-5523123, E-633079	Sample Local Street Package 22-R-03 - Waterford Ave Cround Elevation: Open of Pavement January 20, 2022 Sample Type: Graph Glow Grap

1 of 1

GENTECHNICOL

Clier	nt:	City of Winn	ipeg			Project Number:	1000-043-18		
Proje	ect Nam	e: Local Street	Package 22-R-03	- Waterford A	Ave	Location:	UTM N-5523	184, E-633182	
Cont	tractor:	Maple Leaf	Drilling Ltd.			Ground Elevation:	Top of Paver	ment	
Meth	nod:	125mm Solid S	tem Auger, B40 Mobile	Truck Mount		Date Drilled:	January 20, 2	2022	
	Sample	Туре:	Grab (G)		Shelby Tube (T)	Split Spoon (S			LPT Core (C)
	Particle	Size Legend:	Fines	Clay	Silt	Sand Sand	Grave		Boulders
Depth (m)	So			ATERIAL DES	SCRIPTION		Sample Type Sample Number	PL MC LL	Test Type △ Torvane △ P Pocket Pen. ♣ □ 図 収 ☑ ○ Field Vane ○
-	-	ASPHALT - 100) mm thick				PC22-22		
		CLAY - silty, tra - grey - frozen, m - high plas - AASHTO	oist and stiff to ve ticity	ry stiff when th	nawed		G22	•	
-0.5-							G23	•	ΔΦ
-1.0-							G24	•	ΔΦ
(.GDT 1/31/22							G25	•	• •
1000-043-18_A_AD.GPJ_TREK.GDT_1/31/22		light browfrozen to	1.5 m depth, mois ermediate plasticit	t and soft whe	en thawed		G26		
000-043-18		CLAY - silty					G27	•	
		- grey - moist, stif - high plas	ff to very stiff				G28	•	ΔΦ
SUB-SURFACE LOG LOGS 2022-01-20_LOCAL STREET PACKAGE 22-R-03		1) No seepage 2) Test hole ope 3) Test hole bad	HOLE AT 2.1 m IN or sloughing obse en to 2.1 m immed ckfilled with auger ated 1 m West of	rved. liately after dri cuttings, gran	ular fill and cold pa	atch asphalt. ve, Westbound lane,			
Logg	ged By:	Asad Dustmar	matov	Review	ed By: Angela F	dler-Kliewer	Project	Engineer: Nelson F	- Ferreira

1 of 1

GENTECHNICOL

Clien	it:	City of Winn	nipeg			Project Number:	1000-	-043-1	8					
Proje	ct Name	: Local Street	t Package 22-R-03 -	Waterford Ave		Location:	UTM	N-552	3231, E-	633273				
Conti	ractor:	Maple Leaf	Drilling Ltd.			Ground Elevation:	Top o	of Pave	ement					
Meth	od:	125mm Solid S	Stem Auger, B40 Mobile T	Truck Mount		Date Drilled:	Janua	ary 20	2022					
	Sample	Type:	Grab (G)	S	helby Tube (T)	Split Spoon (S	SS) / SF	т 🕨	Split	Barrel (S	B) / LPT		Core (0	C)
	Particle	Size Legend:	Fines	Clay	Silt	Sand		Grav		Cobl	_	Вс	ulders	
Depth (m)	Soil Symbol	ASPHALT - 70		TERIAL DESCF	RIPTION		Sample Type		16 17 Parti 0 20	cle Size (%	20 21	Stree Te A T Poo Price O Fie	ained She ngth (kPa est Type orvane △ cket Pen. ③ Qu ☑ eld Vane (00 150	(a)
-0.5		SAND (FILL) - 9 - reddish b - dry to mo - AASHTO CLAY - silty, tra - brown	some silt to silty, so brown pist, compact to dens b: A-1-b ace sand noist and stiff to very sticity	se, poorly grade	ed, rounded to s			G29 G30					△•	
-1.0-								G31	•				7Φ	
1000-045-18 A AU. GFJ 1 INSTALLED 1 1/3/122		light browfrozen to	1.5 m depth, moist a		hawed			G33	•					
	- - - -							004						
-2.0-	<u> </u>							G35	•					
Sub-Surface Log Logs 2022-01-20 Local Sirker Package 22-4-03		I) No seepage 2) Test hole op 3) Test hole ba		red. ately after drillin uttings, granula	r fill and cold pa	atch asphalt. ave, Eastbound lane,	1.5							
Logg	ed By:	Asad Dustma	matov	Reviewed	By: Angela F	idler-Kliewer	_ F	Projec	t Engine	er: Nels	on Ferre	eira		

2022 Local Street Package - 22-R-03 Sub-Surface Investigation

Waterford Avenue: between Pembina Highway and Lyon Street

Test Hole		Paveme	ent Surface	Pavement Str	ucture Material		Sample	Depth (m)	Moisture		Grain Siz	e Analysis	6	A	tterberg L	imits
No.	Test Hole Location	Туре	Thickness (mm)	Туре	Thickness (mm)	Subgrade Description	Top (m)	Bottom (m)	Content (%)	Clay (%)	Silt (%)	Sand (%)	Gravel (%)	Plastic	Liquid	Plasticity Index
		Asphalt	60	Concrete	-	Sand; AASHTO: A-1-b (I)	0.2	0.3	9							
	UTM : 14U 5523011 N,					Silt; AASHTO: A-6 (17)	0.5	0.6	20							
	632876 E Located 2 m East of					Silt; AASHTO: A-6 (17)	0.8	0.9	19	24	70	6	0	15	35	19
TH22-01	West corner of #967					Clay; AASHTO: A-7-6 (I)	1.1	1.2	26							
	Waterford ave, Eastbound lane, 1.5 m					Clay; AASHTO: A-7-6 (I)	1.4	1.5	28							
	North of South curb.					Clay; AASHTO: A-7-6 (I)	1.7	1.8	43							
						Clay; AASHTO: A-7-6 (I)	2.0	2.1	35							
-		Asphalt	70	Concrete	-	Sand; AASHTO: A-1-b (I)	0.2	0.3	10							
	UTM : 14U 5523075 N,					Clay; AASHTO: A-7-6 (I)	0.5	0.6	28							
	632985 E					Clay; AASHTO: A-7-6 (I)	0.8	0.9	30							
TH22-02	Located 2 m East of East corner of #941 Waterford					Clay; AASHTO: A-7-6 (I)	1.1	1.2	29							
	ave, Westbound lane, 1.5					Silt; AASHTO: A-6 (I)	1.4	1.5	20							
	m South of North curb.					Clay; AASHTO: A-7-6 (I)	1.7	1.8	38							
						Clay; AASHTO: A-7-6 (I)	2.0	2.1	39							
		Asphalt	60	Concrete	-	Sand; AASHTO: A-1-B (I)	0.2	0.3	4							
	UTM: 14U 5523123 N,					Clay; AASHTO: A-7-6 (64)	0.5	0.6	26							
	633079 E Located 2 m East of					Clay; AASHTO: A-7-6 (64)	0.8	0.9	29	77	22	1	0	24	81	56
TH22-03	West corner of #912					Clay; AASHTO: A-7-6 (64)	1.1	1.2	27							
	Waterford ave, Eastbound lane, 2 m					Clay; AASHTO: A-7-6 (64)	1.4	1.5	33							
	North of South curb.					Clay; AASHTO: A-7-6 (64)	1.7	1.8	39							
						Clay; AASHTO: A-7-6 (64)	2.0	2.1	44							

⁽I) - AASHTO classification was interpreted based on visual classification.

2022 Local Street Package - 22-R-03 Sub-Surface Investigation

Waterford Avenue: between Pembina Highway and Lyon Street

Test Hole	T	Paveme	ent Surface	Pavement Str	ucture Material	0.1 1.5	Sample	Depth (m)	Moisture		Grain Siz	e Analysis	3	At	terberg L	imits
No.	Test Hole Location	Туре	Thickness (mm)	Туре	Thickness (mm)	Subgrade Description	Top (m)	Bottom (m)	Content (%)	Clay (%)	Silt (%)	Sand (%)	Gravel (%)	Plastic	Liquid	Plasticity Index
		Asphalt	100	Concrete	-	Clay; AASHTO: A-7-6 (I)	0.2	0.3	21							
	UTM : 14U 5523184 N,					Clay; AASHTO: A-7-6 (I)	0.5	0.6	21							
	633182 E Located 1 m West of					Clay; AASHTO: A-7-6 (I)	0.8	0.9	22							
TH22-04	East corner of #861					Clay; AASHTO: A-7-6 (I)	1.1	1.2	21							
	Waterford ave, Westbound lane, 1.5 m					Silt; AASHTO: A-6 (I)	1.4	1.5	8							
	South of North curb.					Silt; AASHTO: A-6 (I)	1.7	1.8	8							
						Clay; AASHTO: A-7-6 (I)	2.0	2.1	40							
		Asphalt	70	Concrete	-	Sand; AASHTO: A-1-b	0.2	0.3	6	24	4.0	60.0	16.0			
	UTM : 14U 5523231 N, 633273 E					Clay; AASHTO: A-7-6 (I)	0.5	0.6	28							
	Located 20 m East of					Clay; AASHTO: A-7-6 (I)	0.8	0.9	29							
TH22-05	East corner of #835					Clay; AASHTO: A-7-6 (I)	1.1	1.2	28							
	Waterford ave, Eastbound lane, 1.5 m					Silt; AASHTO: A-6 (I)	1.4	1.5	22							
	North of South curb.					Silt; AASHTO: A-6 (I)	1.7	1.8	23							
						Silt; AASHTO: A-6 (I)	2.0	2.1	24							

⁽I) - AASHTO classification was interpreted based on visual classification.

Project No. 1000-043-18
Client WSP Canada Inc

Project Local Street Package 22-R-03

Sample Date20-Jan-22Test Date24-Jan-22TechnicianAD

Test Hole	TH22-01	TH22-01	TH22-01	TH22-01	TH22-01	TH22-01
Depth (m)	0.2 - 0.3	0.5 - 0.6	0.8 - 0.9	1.1 - 1.2	1.4 - 1.5	1.7 - 1.8
Sample #	G01	G02	G03	G04	G05	G06
Tare ID	P24	F95	F54	P29	N115	E67
Mass of tare	8.7	8.3	8.6	8.4	8.6	9.1
Mass wet + tare	163.9	273.5	406.5	242.5	196.1	393.7
Mass dry + tare	151.3	228.6	343.6	194.1	154.7	277.6
Mass water	12.6	44.9	62.9	48.4	41.4	116.1
Mass dry soil	142.6	220.3	335.0	185.7	146.1	268.5
Moisture %	8.8%	20.4%	18.8%	26.1%	28.3%	43.2%

Test Hole	TH22-01	TH22-02	TH22-02	TH22-02	TH22-02	TH22-02
Depth (m)	2.0 - 2.1	0.2 - 0.3	0.5 - 0.6	0.8 - 0.9	1.1 - 1.2	1.4 - 1.5
Sample #	G07	G08	G09	G10	G11	G12
Tare ID	W83	C18	A28	AC03	AB94	AB47
Mass of tare	8.5	8.7	8.2	6.8	6.8	6.8
Mass wet + tare	323.4	248.0	139.9	252.7	337.4	286.2
Mass dry + tare	242.1	226.6	111.1	196.5	262.5	239.3
Mass water	81.3	21.4	28.8	56.2	74.9	46.9
Mass dry soil	233.6	217.9	102.9	189.7	255.7	232.5
Moisture %	34.8%	9.8%	28.0%	29.6%	29.3%	20.2%

Test Hole	TH22-02	TH22-02	TH22-03	TH22-03	TH22-03	TH22-03
Depth (m)	1.7 - 1.8	2.0 - 2.1	0.2 - 0.3	0.5 - 0.6	0.8 - 0.9	1.1 - 1.2
Sample #	G13	G14	G15	G16	G17	G18
Tare ID	H45	AB49	AB01	Z54	Z86	F87
Mass of tare	8.5	7.0	6.7	8.5	8.5	8.5
Mass wet + tare	285.1	337.2	433.1	282.5	421.6	298.8
Mass dry + tare	208.4	244.3	417.5	225.3	328.4	236.9
Mass water	76.7	92.9	15.6	57.2	93.2	61.9
Mass dry soil	199.9	237.3	410.8	216.8	319.9	228.4
Moisture %	38.4%	39.1%	3.8%	26.4%	29.1%	27.1%

Project No. 1000-043-18
Client WSP Canada Inc

Project Local Street Package 22-R-03

Sample Date20-Jan-22Test Date24-Jan-22TechnicianAD

Test Hole	TH22-03	TH22-03	TH22-03	TH22-04	TH22-04	TH22-04
Depth (m)	1.4 - 1.5	1.7 - 1.8	2.0 - 2.1	0.2 - 0.3	0.5 - 0.6	0.8 - 0.9
Sample #	G19	G20	G21	G22	G23	G24
Tare ID	E83	AB27	F112	P08	W48	N72
Mass of tare	8.8	6.7	8.2	8.6	8.4	8.7
Mass wet + tare	286.1	341.7	359.8	243.4	313.9	251.3
Mass dry + tare	218.1	247.7	251.9	202.9	260.3	208.2
Mass water	68.0	94.0	107.9	40.5	53.6	43.1
Mass dry soil	209.3	241.0	243.7	194.3	251.9	199.5
Moisture %	32.5%	39.0%	44.3%	20.8%	21.3%	21.6%

Test Hole	TH22-04	TH22-04	TH22-04	TH22-04	TH22-05	TH22-05
Depth (m)	1.1 - 1.2	1.4 - 1.5	1.7 - 1.8	2.0 - 2.1	0.2 - 0.3	0.5 - 0.6
Sample #	G25	G26	G27	G28	G29	G30
Tare ID	W80	AB10	N07	E69	BBW	AB30
Mass of tare	8.5	6.8	8.6	8.7	242.1	6.8
Mass wet + tare	223.4	249.1	212.5	280.9	1160.9	342.3
Mass dry + tare	185.7	231.9	196.9	203.8	1111.9	268.7
Mass water	37.7	17.2	15.6	77.1	49.0	73.6
Mass dry soil	177.2	225.1	188.3	195.1	869.8	261.9
Moisture %	21.3%	7.6%	8.3%	39.5%	5.6%	28.1%

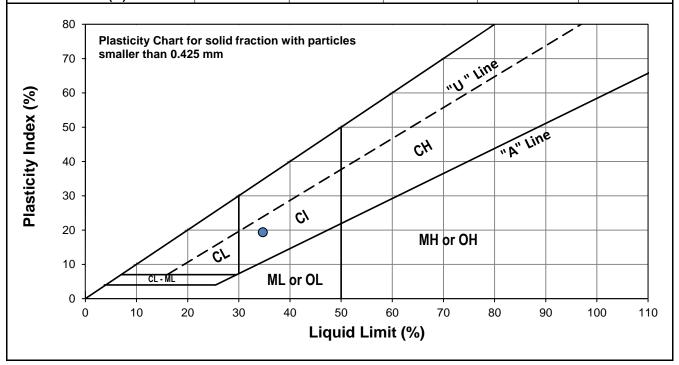
Test Hole	TH22-05	TH22-05	TH22-05	TH22-05	TH22-05	
Test Hole	11122-05	11122-03	11122-03	11122-03	11122-03	
Depth (m)	0.8 - 0.9	1.1 - 1.2	1.4 - 1.5	1.7 - 1.8	2.0 - 2.1	
Sample #	G31	G32	G33	G34	G35	
Tare ID	D12	E33	A8	W87	N36	
Mass of tare	8.4	8.5	8.1	8.4	8.4	
Mass wet + tare	325.2	371.6	214.5	388.8	370.3	
Mass dry + tare	255.0	293.0	177.2	318.8	301.4	
Mass water	70.2	78.6	37.3	70.0	68.9	
Mass dry soil	246.6	284.5	169.1	310.4	293.0	
Moisture %	28.5%	27.6%	22.1%	22.6%	23.5%	

www.trekgeotechnical.ca WWW.trekgeotechnical.ca
1712 St. James Street
Winnipeg, MB R3H 0L3
Tel: 204.975.9433 Fax: 204.975.9435

Atterberg Limits ASTM D4318-10e1

Project No. 1000-043-18 Client City of Winnipeg Local Street Package 22-R-03 **Project**

Test Hole TH22-01 Sample # G03 Depth (m) 0.8 - 0.9 Sample Date 20-Jan-22


Test Date 26-Jan-22 Technician DS

Liquid Limit 35 **Plastic Limit** 15 **Plasticity Index** 19

Liquid Limit

Liquid Littiit				
Trial #	1	2	3	
Number of Blows (N)	17	23	30	
Mass Tare (g)	14.055	14.212	14.045	
Mass Wet Soil + Tare (g)	26.869	27.073	27.966	
Mass Dry Soil + Tare (g)	23.436	23.727	24.453	
Mass Water (g)	3.433	3.346	3.513	
Mass Dry Soil (g)	9.381	9.515	10.408	
Moisture Content (%)	36.595	35.166	33.753	

Plastic Limit

Trial #	1	2	3	4	5
Mass Tare (g)	13.975	13.933			
Mass Wet Soil + Tare (g)	21.012	22.072			
Mass Dry Soil + Tare (g)	20.080	20.985			
Mass Water (g)	0.932	1.087			
Mass Dry Soil (g)	6.105	7.052			
Moisture Content (%)	15.266	15.414			

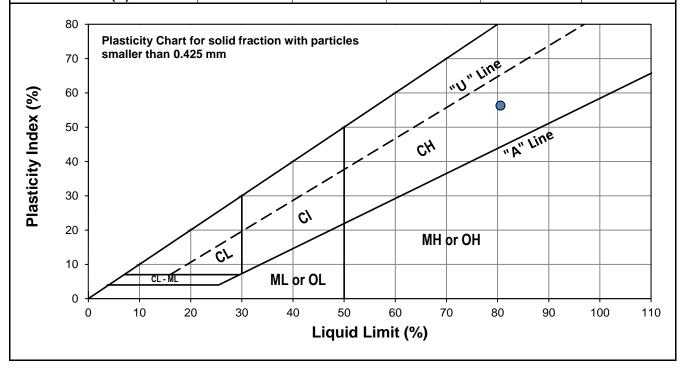
www.trekgeotechnical.ca WWW.trekgeotechnical.ca
1712 St. James Street
Winnipeg, MB R3H 0L3
Tel: 204.975.9433 Fax: 204.975.9435

Atterberg Limits ASTM D4318-10e1

Project No. 1000-043-18 Client City of Winnipeg

Project Local Street Package 22-R-03

Test Hole TH22-03 Sample # G17 Depth (m) 0.8 - 0.9 Sample Date 20-Jan-22


Test Date 26-Jan-22 Technician DS

Liquid Limit 81 **Plastic Limit** 24 **Plasticity Index** 56

Liquid Limit

Liquid Littiit				
Trial #	1	2	3	
Number of Blows (N)	18	22	32	
Mass Tare (g)	13.991	14.071	14.104	
Mass Wet Soil + Tare (g)	23.614	25.180	23.661	
Mass Dry Soil + Tare (g)	19.252	20.191	19.449	
Mass Water (g)	4.362	4.989	4.212	
Mass Dry Soil (g)	5.261	6.120	5.345	
Moisture Content (%)	82.912	81.520	78.803	

Plastic Limit

Trial #	1	2	3	4	5
Mass Tare (g)	14.068	13.881			
Mass Wet Soil + Tare (g)	20.969	21.678			
Mass Dry Soil + Tare (g)	19.610	20.165			
Mass Water (g)	1.359	1.513			
Mass Dry Soil (g)	5.542	6.284			
Moisture Content (%)	24.522	24.077			

Project No. 1000-043-18
Client WSP Canada Inc

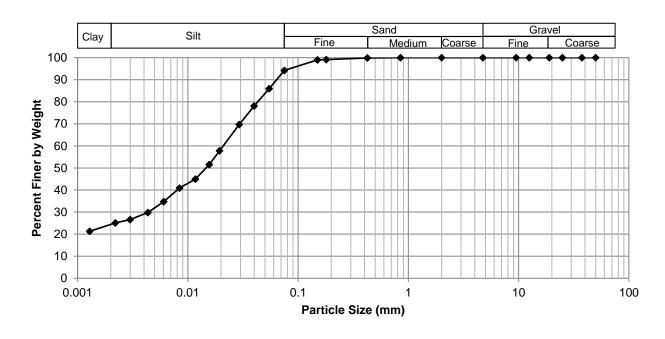
Project Local Street Package 22-R-03

 Test Hole
 TH22-01

 Sample #
 G03

 Depth (m)
 0.8 - 0.9

 Sample Date
 20-Jan-22


 Test Date
 25-Jan-22

 Technician
 AD

Gravel	0.0%	
Sand	5.8%	
Silt	70.0%	
Clay	24.3%	

Particle Size Distribution Curve

Gra	avel	Sand		Silt and Clay	
Particle Size (mm)	Percent Passing	Particle Size (mm)	Percent Passing	Particle Size (mm)	Percent Passing
50.0	100.00	4.75	100.00	0.0750	94.23
37.5	100.00	2.00	100.00	0.0545	85.95
25.0	100.00	0.850	100.00	0.0399	78.13
19.0	100.00	0.425	99.88	0.0293	69.69
12.5	100.00	0.180	99.17	0.0194	57.81
9.50	100.00	0.150	98.98	0.0157	51.56
4.75	100.00	0.075	94.23	0.0117	44.99
				0.0084	40.93
				0.0060	34.73
				0.0043	29.79
				0.0030	26.60
				0.0022	25.10
				0.0013	21.29

Project No. 1000-043-18
Client WSP Canada Inc

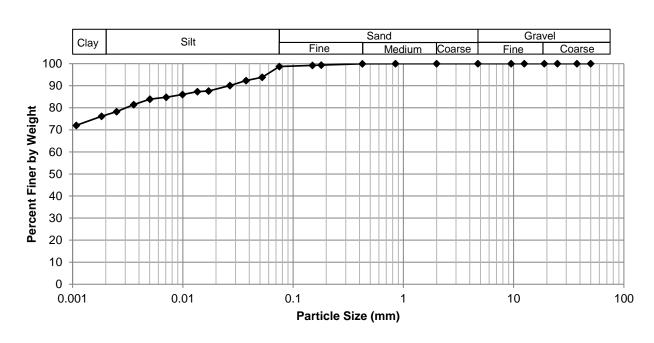
Project Local Street Package 22-R-03

 Test Hole
 TH22-03

 Sample #
 G17

 Depth (m)
 0.8 - 0.9

 Sample Date
 20-Jan-22

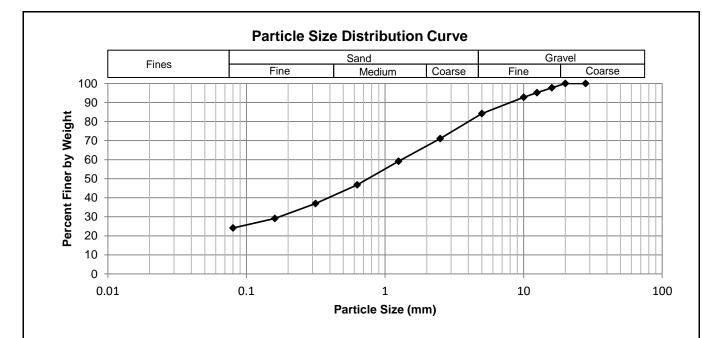

 Test Date
 25-Jan-22

 Technician
 AD

Gravel	0.0%
Sand	1.3%
Silt	22.0%
Clay	76.7%

Particle Size Distribution Curve

Gra	avel	Sand Silt and Cl		nd Clay	
Particle Size (mm)	Percent Passing	Particle Size (mm)	Percent Passing	Particle Size (mm)	Percent Passing
50.0	100.00	4.75	100.00	0.0750	98.71
37.5	100.00	2.00	100.00	0.0525	93.86
25.0	100.00	0.850	100.00	0.0374	92.30
19.0	100.00	0.425	99.92	0.0267	90.11
12.5	100.00	0.180	99.34	0.0171	87.61
9.50	100.00	0.150	99.23	0.0135	87.30
4.75	100.00	0.075	98.71	0.0100	86.05
				0.0071	84.79
				0.0050	83.92
				0.0036	81.47
				0.0025	78.29
				0.0018	76.16
				0.0011	72.03


www.trekgeotechnical.ca 1712 St. James Street Winnipeg, MB R3H 0L3 Tel: 204.975.9433 Fax: 204.975.9435

Project No. 1000-043-18
Client WSP Canada Inc

Project Local Street Package 22-R-03

Test Hole TH22-05
Sample # G29
Depth 0.2-0.3
Date Sampled 20-Jan-22
Date Tested 25-Jan-22
Technician AD

Total Weight (g)	869.8
Gravel %	15.8
Sand %	60.1
Fines %	24.1

Sieve Opening (mm)	Percent Passing	Specification (Min-Max)
20.0	100	-
16.0	98	-
12.5	95	-
10.0	93	-
5.0	84	-
2.50	71	-
1.25	59	-
0.630	47	-
0.315	37	-
0.160	29	-
0.080	24	-

Project No. 1000-043-18
Client WSP Canada Inc

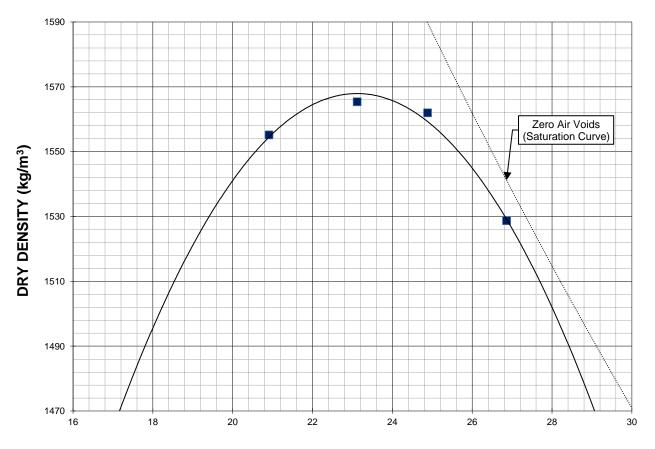
Project Local Street Package 22-R-03

Sample # R22-014

Source TH21-02, 03, 04 and 05

Material Clay Sub-grade Material

 Sample Date
 20-Jan-22


 Test Date
 24-Jan-22

 Technician
 AD

Maximum Dry Density (kg/m3)	1568
Optimum Moisture (%)	23.1

Trial Number	1	2	3	4	
Wet Density (kg/m ³)	1880	1927	1951	1939	
Dry Density (kg/m³)	1555	1565	1562	1529	
Moisture Content (%)	20.9	23.1	24.9	26.9	

MOISTURE CONTENT (%)

California Bearing Ratio Test Data Sheet ASTM D1883-16

Project No. 1000-043-18 Source

Client WSP Group Canada Inc.

Project Local Streets Package 22-R-03

Sample # R22-014 (Waterford Ave) TH21-02,03,04 and 05

Material Clay

Sample Date 2022-01-20 **Test Date** 2021-01-27

Technician AD

Proctor Results (ASTM D698)

Maximum Dry Density 1568 kg/m3 **Optimum Moisture Content** 23.1 % Material Retained on 19 mm Sieve 0.0 %

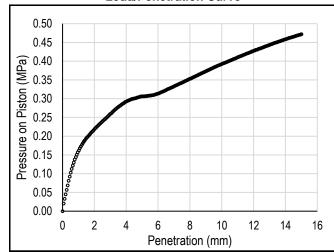
Soaking Results

Surcharge 4.54 kg Swell 1.3 % Moisture Content in top 25 mm 32.0 % Immersion Period 96 h

CBR Sample Compaction

1477 kg/m3 Dry Density **Initial Moisture Content** 24.3 %

Relative Density 94.2 % SPMDD


CBR Results

CBR at 2.54 mm 3.5 % CBR at 5.08 mm 3.0 % Zero Correction 0 mm

Test Data

Measured Corrected Penetration (mm) Pressure (MPa) Pressure (MPa) 0.12 0.12 0.64 1.27 0.18 0.18 0.21 0.21 1.91 2.54 0.24 0.24 0.27 0.27 3.18 0.29 3.81 0.29 4.45 0.30 0.30 5.08 0.31 0.31 7.62 0.35 0.35 0.40 0.40 10.16 12.70 0.44 0.44

Load/Penetration Curve

Comments:

Photo 1: Pavement Core Sample at Test Hole TH22-01

Photo 2: Pavement Core Sample at Test Hole TH22-02

Photo 3: Pavement Core Sample at Test Hole TH22-03

Photo 4: Pavement Core Sample at Test Hole TH22-04

Photo 5: Pavement Core Sample at Test Hole TH22-05

Δ	n	n	6	n	d	ix	B
_	ν	ν	C		u	IA	

Summary Table, Pavement Core Photos, and Summary of Pavement Compressive Strength – Gerard Street

2022 Local Street Package - 22-R-03 Gerard Street: River Avenue to end

		Paveme	ent Surface	Pavement Structure Material			
Pavement Core No.	Pavement Core Location	Type	Thickness (mm)	Туре	Thickness (mm)	Corrected Compressive Strength (Mpa)	
PC22-18	UTM : 5526760 m N, 633118 m E; Located in front of #102 Gerard St, Southbound lane, 2 m East of West curb.		-	Concrete	150	75.91	
1 022 10							
PC22-24	UTM: 5526790 m N, 633101 m E; Located 14 m South of Gerard St and River Ave intersection, Northbound lane, 1.5 m	Asphalt	-	Concrete	170	87.24	
1 022-24	West of East curb.						
PC22-25	UTM: 5526700 m N, 633151 m E; Located 137 m South of Gerard St and River Ave intersection, Northbound lane, 1.5 m	Asphalt	-	Concrete	220	75.48	
F 022-25	West of East curb.						

Photo 1: Pavement Core Sample at PC22-18

Photo 2: Pavement Core Sample at PC22-24

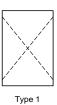
Photo 3: Pavement Core Sample at PC22-25

Concrete Core Compressive Strength Report

CSA A23.2-14C

Project No. 1000-043-18 **Date** January 31, 2022

2022 Local Street Package - 22-R-03 Technician AD


Client WSP Group Canada Inc.

	Core ID	Date	Date of	Age at Break	Diam. (mm)	- 3	~. I <u>.</u> [Compressive S		Break	Correction Factors*				
Core Location		Received	Break					Uncorrected f _{conc}	Corrected* f _c	Туре	F _{I/d}	F_{dia}	F_{mc}	F _D	F _{reinf}
Gerard Street	PC18	2022-01-17	2022-01-29	-	95	144	Soaked 48 h	66.81	75.91	1	0.98	1.00	1.09	1.06	1.00
Gerard Street	PC24	2022-01-20	2022-01-29	ı	95	152	Soaked 48 h	74.51	92.30	1	0.99	1.00	1.09	1.06	1.08
Gerard Street	PC25	2022-01-20	2022-01-29	-	95	185	Soaked 48 h	65.07	75.48	1	1.00	1.00	1.09	1.06	1.00

Comments

Project

*Correction factors $F_{I/d}$, F_{dia} , F_{mc} , and F_D calculated as per ACI 214.4R-03, and correction factor F_{reinf} calculated as per Khoury et al. (2014): $f_c = f_{conc}F_{I/d}F_{dia}F_{mc}F_DF_{reinf}$

Type 6

Reviewed by (print): Angela Fidler-Kliewer, C.Tech. Signature: Angela Fidler-Kliewer

Table 6	List of co	omparisor	is betw	een tes	ted cor-	es to de	etermin	e.										
	A18	A17	A16	A15	A14	A13	A12	A11	A10	A9	A8	A7	A6	A5	A4	A3	A2	A
A1	+0	•	+0	10	10		•		THE ST		•	# MI		A	\wedge		1/18	
A2																		
A3						-				-								
A4																		
A5																		
A6								-AO	HAO									
A7								-AO										
A8		•	•	•	•													
A9																		
A10																		
A11																		
A12		•		•	•													
A13																		
A14				•														
A15		•																
A16	••																	
A17	•																	
418																		

• Diameter of steel bar.

▲ Distance of steel bar from nearly end of core.

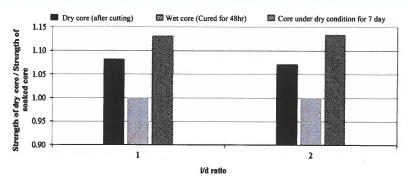
■ Number of steel bars and spacing between bars.

• Distance of steel bar from vertical axis of specimen.

This brief review indicated that the various proposed relationships for correction factors are all nonlinear. It should be noted that the equations given by the Egyptian Code takes into account most variables that may affect the interpretation of the results; however, the code ignores the deterioration of steel-concrete bond that may occur and also the position of the reinforcement from vertical axis of core specimens.

Weighted nonlinear regression analysis has been performed to determine the factor (F_{reinf}) with the use of the software "SAS" package and "Data Fit." This shows that the correction factor for reinforcement (F_{reinf}) is given by the following expression:

$$F_{\text{reinf}} = \left[1 + 1.5 \frac{\left[\Phi_r \times r + \Phi_r \times (S/10)\right]}{\Phi_c * L} \times \frac{1.13}{f_{\text{core}}^{0.015}}\right]$$


• For core specimen containing two bars no further apart than the diameter of the larger bar, only the bar corresponding to the higher value of $(\Phi_r * d)$ is considered. If the bars are further apart, their combined effect is assessed by replacing the term $(\Phi_r * r)$ by $(\sum \Phi_r * r)$ as follows:

$$F_{\text{reinf}} = \left[1 + 1.5 \frac{\sum [\Phi_r \times r + \Phi_r \times (S/10)]}{\Phi_r * I_r}\right] \times \frac{1.13}{\rho_{0.015}}$$
(13)

where F_{reinf} is the correction factor for reinforcement, Φ_r is the diameter of the reinforcement, Φ_c is the diameter of the concrete specimen, r is the distance of axis of bar from nearer end of specimen, S is the distance of axis of bar from axis of core specimen, L is the length of the specimen after end preparation by grinding or capping, and f_{core} is the concrete core strength (kg/cm²).

6.1.6. Effect of moisture condition of core

Results of about 100 cores indicate that the strength of cores left to dry in air for 7 days is on average 13% greater than that of cores soaked at least 40 h before testing. The strength of cores with negligible moisture gradient and tested after cutting is found to be 7-9% larger than that of soaked cores as shown in Fig. 20. The authors strongly recommend to use a correction factor accounting for moisture condition (F_m) equals to 1.09 and 0.96, respectively, for cores tested after 48 h soaked in water and for those tested after 7 days dry in air.

Effect of core moisture condition on core strength for different aspect ratios (l/d).

Table 1	Factors involved	in interpretation	of core results	by different codes.
A SECURITION OF		I SAN TO SERVICE STATE OF	and the state of the state of the state of	The state of the s

List	Code/standard	Edition	Factors Considered								
			Aspect ratio	Diameter	Reinforcing	Moisture	Damage	Direction			
1	Egyptian Code/Standard Specification	2008	√		√			√			
2	British Code/Standard Specification	2003	V		1			1			
3	American Concrete Institute ACI	1998	V								
		2012	1	√		V	1				
4	European Standard Specification	1998	1	1	√		1				
		2009	1		1						
5	Japanese Standard	1998	1								
6	Concrete Society	1987	1		1		1	1			

In addition, for core specimen containing two bars no further apart than the diameter of the larger bar, only the bar corresponding to the higher value of $(\Phi_r * d)$ is considered. If the bars are further apart, their combined effect should be assessed by replacing the term $(\Phi_r * d)$ by the term $(\sum \Phi_r * d)$.

It should be pointed out that above equations used to interpret the core concrete strength to the in-situ concrete cube strength have been developed based on a set of assumptions and through many converting process. It is also of interest to note that the damage effect is considered in the development of the formulas in indirect way. The subject derivation and detailed formulas may be seen elsewhere [14].

3.2. American Concrete Institute (ACI)

3.2.1. Former ACI Code (2002) & Current ASTM (2009)

The methodology of core interpretation given in the former ACI code was remained without changes for decades and up to Year (2003). The in-place strength of concrete cylinder at the location from which a core test specimen was extracted can be computed using the equation:

$$f_{\rm cy} = F_{l/d} \cdot f_{\rm core} \tag{4}$$

where $f_{\rm cy}$ is the equivalent in-place concrete cylinder strength, $f_{\rm core}$ is concrete core strength, and $F_{l/d}$ is the strength correction factor for aspect ratio.

The former ACI code does not include any equation to calculate the correction factor $(F_{I/d})$; however, the code gives different values for this term that is associated with different aspect ratios (I/d) as given in Table 2. It should also be noted that the approach of current ASTM is similar to that mentioned above. The only considered variable is the aspect ratio (I/d). It should be noted that identical approach to that mentioned above is still effective in ASTM C42/C42M-03 [10].

3.2.2. Current ACI Code (2012) [15]

Starting from Year 2003, significant changes have been made to the relevant ACI Code provisions regarding the interpreta-

Table 2 Mean values for factor $F_{l/d}$ according to ACI Code (1998) and ASTM.

	Specimen	length-to-dian	neter ratio, l/d	
	1.00	1.25	1.50	1.75
$F_{l/d}$	0.87	0.93	0.96	0.98

tion of core strength test results. New factors have been considered. These include core diameter, moisture content of core sample, core damage associated with drilling, in addition to the effect of aspect ratio that was previously considered in the former ACI edition (1998). According to the ACI 214.4R-03, the in-place concrete strength can be computed using the equation:

using the equation:
$$f_c = F_{I/d} \cdot F_{dia} \cdot F_{mc} \cdot F_D \cdot f_{core} \quad F_{core} \quad F_{core} \quad (5)$$

where f_c is the equivalent in-place concrete cylinder strength, $f_{\rm core}$ is concrete core strength, $F_{l/d}$ is strength correction factor for aspect ratio, $F_{\rm dia}$ is strength correction factors for diameter, $F_{\rm mc}$ is strength correction factor for moisture condition of core sample, and F_D is the strength correction factor that accounts for effect of damage sustained during core drilling including micro-cracking and undulations at the drilled surface and cutting through coarse-aggregate particles that may subsequently pop out during testing.

The ACI committee considered the correction factors presented in Table 3 for converting core strengths into equivalent in-place strengths based on the work reported by Bartlett and MacGregor [6]. It should be noted that the magnitude of

Table 3 Strength correction factors according to ACI 214.4R-03

List	Factors	Mean values
(1) ^b	$F_{l/d}: l/d$ ratio	
	As-received	$1 - \{0.130 - \alpha f_{\text{core}}\} \left(2 - \frac{1}{d}\right)^2$
	Soaked 48 h	$1 - \{0.117 - \alpha f_{\text{core}}\} \left(2 - \frac{1}{d}\right)^2$
	Air dried ^a	$1 - \{0.144 - \alpha f_{\text{core}}\} (2 - \frac{1}{d})^2$
(2)	F _{dia} : core diameter	
	50 mm	1.06
	100 mm	1.00
	150 mm	0.98
(3)	$F_{\rm mc}$: core moisture content	
	As-received	1.00
	Soaked 48 h	1.09
	Air dried ^a	0.96
(4)	F_D : damage due to drilling	1.06

^a Standard treatment specified in ASTM C 42/C 42M.

^b Constant α equals 4.3(10⁻⁴) 1/MPa for f_{core} in MPa.

Appen	dix	C
--------------	-----	---

Summary Table, Pavement Core Photos - Oakenwald Avenue

2022 Local Street Package - 22-R-03

Oakenwald Avenue: between Wicklow Street and Point Road

		Paveme	ent Surface		Pavement Structure Ma	terial
Pavement Core No.	Pavement Core Location	Туре	Thickness (mm)	Туре	Thickness (mm)	Corrected Compressive Strength (Mpa)
PC22-10	UTM: 5522932 m N, 633308 m E; Located in front of #761 Oakenwald Ave, Eastbound lane, 1.5 m North of South curb.	Asphalt	80	Concrete	-	-
PC22-11	UTM : 5522965 m N, 633363 m E; Located 3 m West of Ruttan Bay and Oakenwald Ave intersection, Westbound lane, 1.5 m	Asphalt	80	Concrete	-	-
. 022	South of North curb.					
PC22-12	UTM: 5522991 m N, 633418 m E; Located in front of #727 Oakenwald Ave, Eastbound lane, 1.8 m North of South curb.	Asphalt	130	Concrete	-	-
D000 10	UTM: 5523037 m N, 633492 m E; Located 2 m East of East corner of #705 Oakenwald Ave, Westbound lane, 1.5 m South of North curb.		90	Concrete	-	-
PC22-13						
D000 44	UTM: 5523066 m N, 633547 m E; Located 14 m East of Lyon St and Oakenward Ave intersection, Eastbound lane, 1.8 m	Asphalt	50	Concrete	-	-
PC22-14	North of South curb.					
D000 45		Asphalt	130	Concrete	-	-
PC22-15	UTM: 5523096 m N, 633602 m E; Located in front of #671 Oakenward Ave, Westbound lane, 2 m South of North curb.					
	UTM: 5523129 m N, 633664 m E; Located 1 m East of West corner of #661 Oakenwald Ave, Eastbound lane, 1.5 m North of	Asphalt	120	Concrete	-	-
PC22-16	South curb.					
PC22-17	UTM: 5523164 m N, 633721 m E; Located 25 m West of Point Rd and Oakenwald Ave intersection, Westbound lane, 1.5 m	Asphalt	120	Concrete	-	-
PU22-17	South of North curb.					

Photo 1: Pavement Core Sample at PC22-10

Photo 2: Pavement Core Sample at PC22-11

Project No. 1000 043 18 January 2022

Photo 3: Pavement Core Sample at PC22-12

Photo 4: Pavement Core Sample at PC22-13

Photo 5: Pavement Core Sample at PC22-14

Photo 6: Pavement Core Sample at PC22-15

Project No. 1000 043 18 January 2022

Photo 7: Pavement Core Sample at PC22-16

Photo 8: Pavement Core Sample at PC22-17

Appendix	D
-----------------	---

Summary Table, Pavement Core Photos, and Summary of Pavement Compressive Strength – Roslyn Road

2022 Local Street Package - 22-R-03

Roslyn Road: between Osbourne Street and Roslyn Crescent

		Paveme	ent Surface	Pavement Structure Material			
Pavement Core No.	Pavement Core Location	Туре	Thickness (mm)	Туре	Thickness (mm)	Corrected Compressive Strength (Mpa)	
PC22-01	UTM: 5526939 m N, 633086 m E; Located 24 m West of Osbourne St and Roslyn Rd intersection, Westbound lane, 1.5 m South of North curb.	Asphalt	-	Concrete	220	76.42	
PC22-02	UTM : 5526924 m N, 632988 m E; Located 7 m East of Roslyn Rd and Evergreen PI intersection, Eastbound lane, 1.5 m North of South curb.	Asphalt	-	Concrete	220	83.10	
PC22-03	UTM : 5526943 m N, 632934 m E; Located 42 m West of Roslyn Rd and Evergreen PI intersection, Westbound lane, 1.5 m South of North curb.	Asphalt	-	Concrete	210	71.88	
PC22-04	UTM: 5526908 m N, 632882 m E; Located 4 m East of Roslyn Cres and Roslyn Rd intersection, Eastbound lane, 2 m North of South curb.	Asphalt	80	Concrete	220	-	

Photo 1: Pavement Core Sample at PC22-01

Photo 2: Pavement Core Sample at PC22-02

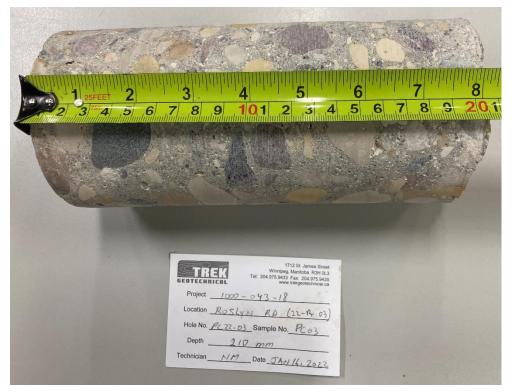


Photo 03: Pavement Core Sample at PC22-03

Photo 04: Pavement Core Sample at PC22-04

Concrete Core Compressive Strength Report

CSA A23.2-14C

Project No. 1000-043-18 **Date** January 31, 2022

Project 2022 Local Street Package - 22-R-03 Technician AD

Client WSP Group Canada Inc.

		Date	Date of	Age at	Diam.	Length	Moisture	Compressive S	Strength (MPa)	Break	(Correc	tion F	actors*	*
Core Location	Core ID	Received	Break	Break	(mm)	(mm)	Conditioning	Uncorrected f _{conc}	Corrected* f _c	Туре	F _{I/d}	F_{dia}	F _{mc}	F _D	F _{reinf}
Roslyn Road	PC01	2022-01-16	2022-01-29	-	95	181	Soaked 48 h	65.92	76.42	1	1.00	1.00	1.09	1.06	1.00
Roslyn Road	PC02	2022-01-16	2022-01-29	-	95	155	Soaked 48 h	72.46	83.10	1	0.99	1.00	1.09	1.06	1.00
Roslyn Road	PC03	2022-01-16	2022-01-29	-	95	185	Soaked 48 h	61.97	71.88	1	1.00	1.00	1.09	1.06	1.00

Comments

*Correction factors $F_{I/d}$, F_{dia} , F_{mc} , and F_D calculated as per ACI 214.4R-03, and correction factor F_{reinf} calculated as per Khoury et al. (2014): $f_c = f_{conc}F_{I/d}F_{dia}F_{mc}F_DF_{reinf}$

Type 6

Reviewed by (print): Angela Fidler-Kliewer, C. Tech. Signature: Angela Fidler - Kliewer

Table 6	List of co	omparisor	is betw	een tes	ted cor-	es to de	etermin	e.										
	A18	A17	A16	A15	A14	A13	A12	A11	A10	A9	A8	A7	A6	A5	A4	A3	A2	A
A1	+0	•	+0	10	10		•		THE ST		•	# MI		A	\wedge		1/18	
A2																		
A3						-				-								
A4																		
A5																		
A6								-AO	HAO									
A7								-AO										
A8		•	•	•	•													
A9																		
A10																		
A11																		
A12		•		•	•													
A13																		
A14				•														
A15		•																
A16	••																	
A17	•																	
418																		

• Diameter of steel bar.

▲ Distance of steel bar from nearly end of core.

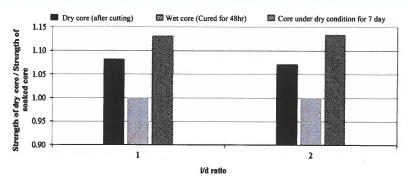
■ Number of steel bars and spacing between bars.

• Distance of steel bar from vertical axis of specimen.

This brief review indicated that the various proposed relationships for correction factors are all nonlinear. It should be noted that the equations given by the Egyptian Code takes into account most variables that may affect the interpretation of the results; however, the code ignores the deterioration of steel-concrete bond that may occur and also the position of the reinforcement from vertical axis of core specimens.

Weighted nonlinear regression analysis has been performed to determine the factor (F_{reinf}) with the use of the software "SAS" package and "Data Fit." This shows that the correction factor for reinforcement (F_{reinf}) is given by the following expression:

$$F_{\text{reinf}} = \left[1 + 1.5 \frac{\left[\Phi_r \times r + \Phi_r \times (S/10)\right]}{\Phi_c * L} \times \frac{1.13}{f_{\text{core}}^{0.015}}\right]$$


• For core specimen containing two bars no further apart than the diameter of the larger bar, only the bar corresponding to the higher value of $(\Phi_r * d)$ is considered. If the bars are further apart, their combined effect is assessed by replacing the term $(\Phi_r * r)$ by $(\sum \Phi_r * r)$ as follows:

$$F_{\text{reinf}} = \left[1 + 1.5 \frac{\sum [\Phi_r \times r + \Phi_r \times (S/10)]}{\Phi_r * I_r}\right] \times \frac{1.13}{\rho_{0.015}}$$
(13)

where F_{reinf} is the correction factor for reinforcement, Φ_r is the diameter of the reinforcement, Φ_c is the diameter of the concrete specimen, r is the distance of axis of bar from nearer end of specimen, S is the distance of axis of bar from axis of core specimen, L is the length of the specimen after end preparation by grinding or capping, and f_{core} is the concrete core strength (kg/cm²).

6.1.6. Effect of moisture condition of core

Results of about 100 cores indicate that the strength of cores left to dry in air for 7 days is on average 13% greater than that of cores soaked at least 40 h before testing. The strength of cores with negligible moisture gradient and tested after cutting is found to be 7-9% larger than that of soaked cores as shown in Fig. 20. The authors strongly recommend to use a correction factor accounting for moisture condition (F_m) equals to 1.09 and 0.96, respectively, for cores tested after 48 h soaked in water and for those tested after 7 days dry in air.

Effect of core moisture condition on core strength for different aspect ratios (l/d).

Table 1	Factors in	nvolved	in i	interpretation	of	core	results	by	different codes	š.
			_		_			-		

List	Code/standard	Edition	Factors Consi	idered				
			Aspect ratio	Diameter	Reinforcing	Moisture	Damage	Direction
1	Egyptian Code/Standard Specification	2008	√		√			√
2	British Code/Standard Specification	2003	V		1			1
3	American Concrete Institute ACI	1998	V					
		2012	1	V		1	1	
4	European Standard Specification	1998	1	1	1		1	
		2009	1		J			
5	Japanese Standard	1998	1					
6	Concrete Society	1987	1		1		1	1

In addition, for core specimen containing two bars no further apart than the diameter of the larger bar, only the bar corresponding to the higher value of $(\Phi_r * d)$ is considered. If the bars are further apart, their combined effect should be assessed by replacing the term $(\Phi_r * d)$ by the term $(\sum \Phi_r * d)$.

It should be pointed out that above equations used to interpret the core concrete strength to the in-situ concrete cube strength have been developed based on a set of assumptions and through many converting process. It is also of interest to note that the damage effect is considered in the development of the formulas in indirect way. The subject derivation and detailed formulas may be seen elsewhere [14].

3.2. American Concrete Institute (ACI)

3.2.1. Former ACI Code (2002) & Current ASTM (2009)

The methodology of core interpretation given in the former ACI code was remained without changes for decades and up to Year (2003). The in-place strength of concrete cylinder at the location from which a core test specimen was extracted can be computed using the equation:

$$f_{\rm cy} = F_{l/d} \cdot f_{\rm core} \tag{4}$$

where $f_{\rm cy}$ is the equivalent in-place concrete cylinder strength, $f_{\rm core}$ is concrete core strength, and $F_{l/d}$ is the strength correction factor for aspect ratio.

The former ACI code does not include any equation to calculate the correction factor $(F_{I/d})$; however, the code gives different values for this term that is associated with different aspect ratios (I/d) as given in Table 2. It should also be noted that the approach of current ASTM is similar to that mentioned above. The only considered variable is the aspect ratio (I/d). It should be noted that identical approach to that mentioned above is still effective in ASTM C42/C42M-03 [10].

3.2.2. Current ACI Code (2012) [15]

Starting from Year 2003, significant changes have been made to the relevant ACI Code provisions regarding the interpreta-

Table 2 Mean values for factor $F_{I/d}$ according to ACI Code (1998) and ASTM.

	Specimen	length-to-dian	neter ratio, l/d	
	1.00	1.25	1.50	1.75
$F_{l/d}$	0.87	0.93	0.96	0.98

tion of core strength test results. New factors have been considered. These include core diameter, moisture content of core sample, core damage associated with drilling, in addition to the effect of aspect ratio that was previously considered in the former ACI edition (1998). According to the ACI 214.4R-03, the in-place concrete strength can be computed using the equation:

using the equation:
$$f_c = F_{i/d} \cdot F_{dia} \cdot F_{mc} \cdot F_D \cdot f_{core} \cdot F_{$$

where f_c is the equivalent in-place concrete cylinder strength, $f_{\rm core}$ is concrete core strength, $F_{l/d}$ is strength correction factor for aspect ratio, $F_{\rm dia}$ is strength correction factors for diameter, $F_{\rm mc}$ is strength correction factor for moisture condition of core sample, and F_D is the strength correction factor that accounts for effect of damage sustained during core drilling including micro-cracking and undulations at the drilled surface and cutting through coarse-aggregate particles that may subsequently pop out during testing.

The ACI committee considered the correction factors presented in Table 3 for converting core strengths into equivalent in-place strengths based on the work reported by Bartlett and MacGregor [6]. It should be noted that the magnitude of

Table 3 Strength correction factors according to ACI 214.4R-03

List	Factors	Mean values
(1) ^b	$F_{l/d}: l/d$ ratio	
	As-received	$1 - \{0.130 - \alpha f_{\text{core}}\} \left(2 - \frac{l}{d}\right)^2$
	Soaked 48 h	$1 - \{0.117 - \alpha f_{\text{core}}\} \left(2 - \frac{1}{d}\right)^2$
	Air dried	$1 - \{0.144 - \alpha f_{\text{core}}\} (2 - \frac{1}{d})^2$
(2)	F _{dia} : core diameter	
	50 mm	1.06
	100 mm	1.00
	150 mm	0.98
(3)	$F_{\rm mc}$: core moisture content	
	As-received	1.00
	Soaked 48 h	1.09
	Air dried ^a	0.96
(4)	F_D : damage due to drilling	1.06

^a Standard treatment specified in ASTM C 42/C 42M.

^b Constant α equals 4.3(10⁻⁴) 1/MPa for f_{core} in MPa.

Αp	pen	dix	E

Summary Table, Pavement Core Photos, and Summary of Pavement Compressive Strength – Wardlaw Avenue

2022 Local Street Package - 22-R-03

Wardlaw Avenue: between Osbourne Street and Donald Street

		Paveme	ent Surface		Pavement Structure Ma	terial
Pavement Core No.	Pavement Core Location	Type	Thickness (mm)	Туре	Thickness (mm)	Corrected Compressive Strength (Mpa)
PC22-05	UTM: 5526628 m N, 633386 m E; Located 39 m East of Osbourne St and Wardlaw Ave intersection, Westbound lane, 2 m South of North curb.	Asphalt	-	Concrete	190	72.11
PC22-06	UTM : 5526646 m N, 633423 m E; Located 86 m East of Osbourne St and Wardlaw Ave intersection, Eastbound lane, 1.5 m North of South curb.	Asphalt	-	Concrete	220	-
PC22-07	UTM: 5526674 m N, 633482 m E; Located 163 m East of Osbourne St and Wardlaw Ave intersection, Westbound lane, 1.5 m South of North curb.	Asphalt	-	Concrete	180	69.47
PC22-08	UTM : 5526693 m N, 633523 m E; Located 86 m West of Scott St and Wardlaw Ave intersection, Eastbound lane, 1.5 m North of South curb.	Asphalt	-	Concrete	210	-
PC22-09	UTM : 5526712 m N, 633562 m E; Located 42 m West of Scott St and Wardlaw Ave intersection, Westbound lane, 1.5 m South of North curb.	Asphalt	-	Concrete	180	69.63
PC22-26	UTM : 5526753 m N, 633628 m E; Located 40 m East of Scotts St and Wardlaw Ave intersection, Eastbound lane, 1.5 m North of South curb.	Asphalt	-	Concrete	210	70.80
PC22-27	UTM : 5526763 m N, 633652 m E; Located 72 m East of Scotts St and Wardlaw Ave intersection, Westbound lane, 5 m South of North curb.	Asphalt	-	Concrete	200	70.65
PC22-28	UTM: 5526797 m N, 633685 m E; Located 76 m West of Donald St and Wardlaw Ave intersection, Eastbound lane, 1.5 m North of South curb.	Asphalt	-	Concrete	210	68.40
PC22-29	UTM : 5526806 m N, 633715 m E; Located 53 m West of Donald St and Wardlaw Ave intersection, Westbound lane, 5 m South of North curb.	Asphalt	-	Concrete	190	-

Photo 1: Pavement Core Sample at PC22-05

Photo 2: Pavement Core Sample at PC22-06

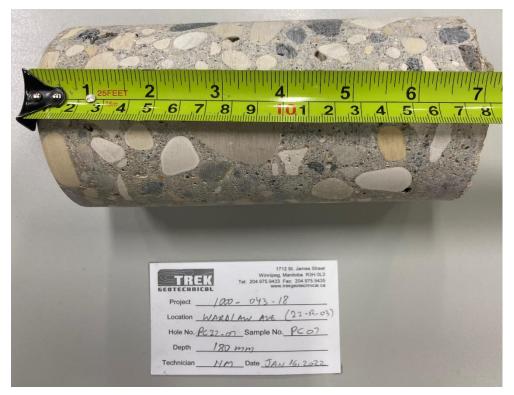


Photo 3: Pavement Core Sample at PC22-07

Photo 4: Pavement Core Sample at PC22-08

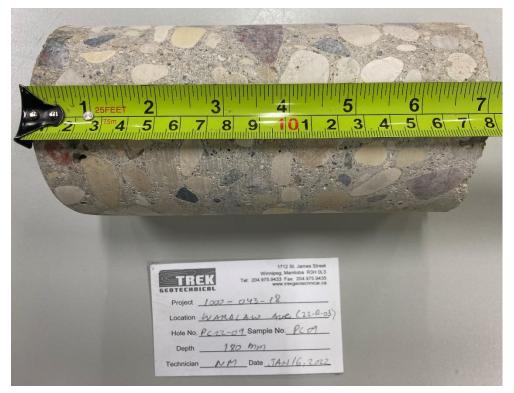


Photo 5: Pavement Core Sample at PC22-09

Photo 6: Pavement Core Sample at PC22-26

Photo 7: Pavement Core Sample at PC22-27

Photo 8: Pavement Core Sample at PC22-28

Photo 9: Pavement Core Sample at PC22-29

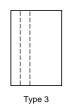
Concrete Core Compressive Strength Report

CSA A23.2-14C

Project No. 1000-043-18 **Date** January 31, 2022

Project 2022 Local Street Package - 22-R-03 Technician AD


Client WSP Group Canada Inc.


		Date	Date of	Age at	Diam.	Length	Moisture	Compressive S	Strength (MPa)	Break	(Correc	tion Fa	actors	;*
Core Location	Core ID	Received	Break	Break	(mm)	(mm)	Conditioning	Uncorrected f _{conc}	Corrected* f _c	Туре	F _{I/d}	F _{dia}	F _{mc}	F _D	F_{reinf}
Wardlaw Avenue	PC05	2022-01-16	2022-01-29	-	95	183	Soaked 48 h	62.18	72.11	1	1.00	1.00	1.09	1.06	1.00
Wardlaw Avenue	PC07	2022-01-16	2022-01-29	-	95	170	Soaked 48 h	60.12	69.47	1	1.00	1.00	1.09	1.06	1.00
Wardlaw Avenue	PC09	2022-01-16	2022-01-29	-	95	168	Soaked 48 h	60.31	69.63	1	1.00	1.00	1.09	1.06	1.00
Wardlaw Avenue	PC26	2022-01-20	2022-01-29	-	95	188	Soaked 48 h	61.02	70.80	1	1.00	1.00	1.09	1.06	1.00
Wardlaw Avenue	PC27	2022-01-20	2022-01-29	•	95	177	Soaked 48 h	61.00	70.65	1	1.00	1.00	1.09	1.06	1.00
Wardlaw Avenue	PC28	2022-01-20	2022-01-29	ı	95	178	Soaked 48 h	59.04	68.40	1	1.00	1.00	1.09	1.06	1.00

Comments

*Correction factors $F_{I/d}$, F_{dia} , F_{mc} , and F_D calculated as per ACI 214.4R-03, and correction factor F_{reinf} calculated as per Khoury et al. (2014): $f_c = f_{conc}F_{I/d}F_{dia}F_{mc}F_DF_{reinf}$

Type 6

Reviewed by (print): Angela Fidler-Kliewer, C. Tech. Signature: Angela Fidler-Kliewer

Table 6	List of co	omparisor	is betw	een tes	ted cor-	es to de	etermin	e.										
	A18	A17	A16	A15	A14	A13	A12	A11	A10	A9	A8	A7	A6	A5	A4	A3	A2	A
A1	+0	•	+0	10	10		•		THE ST		•	# MI		A	\wedge		1/18	
A2																		
A3						-				-								
A4																		
A5																		
A6								-AO	HAO									
A7								-AO										
A8		•	•	•	•													
A9																		
A10																		
A11																		
A12		•		•	•													
A13																		
A14				•														
A15		•																
A16	••																	
A17	•																	
418																		

• Diameter of steel bar.

▲ Distance of steel bar from nearly end of core.

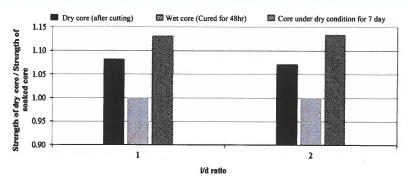
■ Number of steel bars and spacing between bars.

• Distance of steel bar from vertical axis of specimen.

This brief review indicated that the various proposed relationships for correction factors are all nonlinear. It should be noted that the equations given by the Egyptian Code takes into account most variables that may affect the interpretation of the results; however, the code ignores the deterioration of steel-concrete bond that may occur and also the position of the reinforcement from vertical axis of core specimens.

Weighted nonlinear regression analysis has been performed to determine the factor (F_{reinf}) with the use of the software "SAS" package and "Data Fit." This shows that the correction factor for reinforcement (F_{reinf}) is given by the following expression:

$$F_{\text{reinf}} = \left[1 + 1.5 \frac{\left[\Phi_r \times r + \Phi_r \times (S/10)\right]}{\Phi_c * L} \times \frac{1.13}{f_{\text{core}}^{0.015}}\right]$$


• For core specimen containing two bars no further apart than the diameter of the larger bar, only the bar corresponding to the higher value of $(\Phi_r * d)$ is considered. If the bars are further apart, their combined effect is assessed by replacing the term $(\Phi_r * r)$ by $(\sum \Phi_r * r)$ as follows:

$$F_{\text{reinf}} = \left[1 + 1.5 \frac{\sum [\Phi_r \times r + \Phi_r \times (S/10)]}{\Phi_r * I_r}\right] \times \frac{1.13}{\rho_{0.015}}$$
(13)

where F_{reinf} is the correction factor for reinforcement, Φ_r is the diameter of the reinforcement, Φ_c is the diameter of the concrete specimen, r is the distance of axis of bar from nearer end of specimen, S is the distance of axis of bar from axis of core specimen, L is the length of the specimen after end preparation by grinding or capping, and f_{core} is the concrete core strength (kg/cm²).

6.1.6. Effect of moisture condition of core

Results of about 100 cores indicate that the strength of cores left to dry in air for 7 days is on average 13% greater than that of cores soaked at least 40 h before testing. The strength of cores with negligible moisture gradient and tested after cutting is found to be 7-9% larger than that of soaked cores as shown in Fig. 20. The authors strongly recommend to use a correction factor accounting for moisture condition (F_m) equals to 1.09 and 0.96, respectively, for cores tested after 48 h soaked in water and for those tested after 7 days dry in air.

Effect of core moisture condition on core strength for different aspect ratios (l/d).

Table 1	Factors in	nvolved	in i	interpretation	of	core	results	by	different codes	š.
			_		_			-		

List	Code/standard	Edition	Factors Consi	idered				
			Aspect ratio	Diameter	Reinforcing	Moisture	Damage	Direction
1	Egyptian Code/Standard Specification	2008	√		√			√
2	British Code/Standard Specification	2003	V		1			1
3	American Concrete Institute ACI	1998	V					
		2012	1	V		1	1	
4	European Standard Specification	1998	1	1	1		1	
		2009	1		J			
5	Japanese Standard	1998	1					
6	Concrete Society	1987	1		1		1	1

In addition, for core specimen containing two bars no further apart than the diameter of the larger bar, only the bar corresponding to the higher value of $(\Phi_r * d)$ is considered. If the bars are further apart, their combined effect should be assessed by replacing the term $(\Phi_r * d)$ by the term $(\sum \Phi_r * d)$.

It should be pointed out that above equations used to interpret the core concrete strength to the in-situ concrete cube strength have been developed based on a set of assumptions and through many converting process. It is also of interest to note that the damage effect is considered in the development of the formulas in indirect way. The subject derivation and detailed formulas may be seen elsewhere [14].

3.2. American Concrete Institute (ACI)

3.2.1. Former ACI Code (2002) & Current ASTM (2009)

The methodology of core interpretation given in the former ACI code was remained without changes for decades and up to Year (2003). The in-place strength of concrete cylinder at the location from which a core test specimen was extracted can be computed using the equation:

$$f_{\rm cy} = F_{l/d} \cdot f_{\rm core} \tag{4}$$

where $f_{\rm cy}$ is the equivalent in-place concrete cylinder strength, $f_{\rm core}$ is concrete core strength, and $F_{l/d}$ is the strength correction factor for aspect ratio.

The former ACI code does not include any equation to calculate the correction factor $(F_{I/d})$; however, the code gives different values for this term that is associated with different aspect ratios (I/d) as given in Table 2. It should also be noted that the approach of current ASTM is similar to that mentioned above. The only considered variable is the aspect ratio (I/d). It should be noted that identical approach to that mentioned above is still effective in ASTM C42/C42M-03 [10].

3.2.2. Current ACI Code (2012) [15]

Starting from Year 2003, significant changes have been made to the relevant ACI Code provisions regarding the interpreta-

Table 2 Mean values for factor $F_{I/d}$ according to ACI Code (1998) and ASTM.

	Specimen length-to-diameter ratio, I/d			
	1.00	1.25	1.50	1.75
$F_{l/d}$	0.87	0.93	0.96	0.98

tion of core strength test results. New factors have been considered. These include core diameter, moisture content of core sample, core damage associated with drilling, in addition to the effect of aspect ratio that was previously considered in the former ACI edition (1998). According to the ACI 214.4R-03, the in-place concrete strength can be computed using the equation:

using the equation:
$$f_c = F_{i/d} \cdot F_{dia} \cdot F_{mc} \cdot F_D \cdot f_{core} \cdot F_{$$

where f_c is the equivalent in-place concrete cylinder strength, $f_{\rm core}$ is concrete core strength, $F_{l/d}$ is strength correction factor for aspect ratio, $F_{\rm dia}$ is strength correction factors for diameter, $F_{\rm mc}$ is strength correction factor for moisture condition of core sample, and F_D is the strength correction factor that accounts for effect of damage sustained during core drilling including micro-cracking and undulations at the drilled surface and cutting through coarse-aggregate particles that may subsequently pop out during testing.

The ACI committee considered the correction factors presented in Table 3 for converting core strengths into equivalent in-place strengths based on the work reported by Bartlett and MacGregor [6]. It should be noted that the magnitude of

Table 3 Strength correction factors according to ACI 214.4R-03

List	Factors	Mean values		
(1) ^b	$F_{l/d}$: l/d ratio			
	As-received	$1 - \{0.130 - \alpha f_{\text{core}}\} \left(2 - \frac{l}{d}\right)^2$		
	Soaked 48 h	$1 - \{0.117 - \alpha f_{\text{core}}\} \left(2 - \frac{1}{d}\right)^2$		
	Air dried	$1 - \{0.144 - \alpha f_{\text{core}}\} (2 - \frac{1}{d})^2$		
(2)	F _{dia} : core diameter			
	50 mm	1.06		
	100 mm	1.00		
	150 mm	0.98		
(3)	F _{mc} : core moisture content			
	As-received	1.00		
	Soaked 48 h	1.09		
	Air dried ^a	0.96		
(4)	F_D : damage due to drilling	1.06		

^a Standard treatment specified in ASTM C 42/C 42M.

^b Constant α equals 4.3(10⁻⁴) 1/MPa for f_{core} in MPa.